Suppr超能文献

用于蛋白酶谱分析的高通量底物噬菌体展示

High throughput substrate phage display for protease profiling.

作者信息

Ratnikov Boris, Cieplak Piotr, Smith Jeffrey W

机构信息

Center on Proteolytic Pathways, Burnham Institute for Medical Research, La Jolla, CA, USA.

出版信息

Methods Mol Biol. 2009;539:93-114. doi: 10.1007/978-1-60327-003-8_6.

Abstract

The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions.

摘要

蛋白酶与其底物之间的相互作用在许多不同层面受到控制,包括共表达、共定位、由辅助接触驱动的结合以及天然抑制剂的存在。在这里,我们关注指导蛋白酶识别底物的最基本参数,即催化裂隙处的识别特异性。对这种底物特异性的理解可用于预测蛋白酶的推定底物、设计蛋白酶激活的成像剂以及启动活性位点抑制剂的设计。我们的团队利用底物噬菌体展示技术对几种基质金属蛋白酶的蛋白酶特异性进行了表征。最近,我们已将该方法应用于一个包含多个高通量步骤的半自动平台。该半自动平台能够让人们获得的数据量增加一个数量级,从而允许对相关蛋白酶进行精确比较以确定它们的功能差异。

相似文献

1
High throughput substrate phage display for protease profiling.
Methods Mol Biol. 2009;539:93-114. doi: 10.1007/978-1-60327-003-8_6.
2
Screening for protease substrate by polyvalent phage display.
Comb Chem High Throughput Screen. 2005 Mar;8(2):197-203. doi: 10.2174/1386207053258541.
3
Quantitative profiling of protease specificity.
PLoS Comput Biol. 2021 Feb 22;17(2):e1008101. doi: 10.1371/journal.pcbi.1008101. eCollection 2021 Feb.
4
Protease substrate site predictors derived from machine learning on multilevel substrate phage display data.
Bioinformatics. 2008 Dec 1;24(23):2691-7. doi: 10.1093/bioinformatics/btn538. Epub 2008 Oct 29.
5
Synthetic and biological approaches to map substrate specificities of proteases.
Biol Chem. 2019 Dec 18;401(1):165-182. doi: 10.1515/hsz-2019-0332.
6
Methods for mapping protease specificity.
Curr Opin Chem Biol. 2007 Feb;11(1):46-51. doi: 10.1016/j.cbpa.2006.11.021. Epub 2006 Dec 6.
7
Phage display as a powerful tool to engineer protease inhibitors.
Biochimie. 2010 Nov;92(11):1689-704. doi: 10.1016/j.biochi.2010.05.003. Epub 2010 May 12.
9
Activity based fingerprinting of proteases using FRET peptides.
Biopolymers. 2007;88(2):141-9. doi: 10.1002/bip.20664.

引用本文的文献

3
Phage-assisted continuous evolution of proteases with altered substrate specificity.
Nat Commun. 2017 Oct 16;8(1):956. doi: 10.1038/s41467-017-01055-9.
4
Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond.
Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt A):1952-1963. doi: 10.1016/j.bbamcr.2017.03.010. Epub 2017 Mar 24.
5
High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family.
Chem Biol. 2015 Aug 20;22(8):1122-33. doi: 10.1016/j.chembiol.2015.07.008. Epub 2015 Aug 6.
6
Massively parallel enzyme kinetics reveals the substrate recognition landscape of the metalloprotease ADAMTS13.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9328-33. doi: 10.1073/pnas.1511328112. Epub 2015 Jul 13.
7
CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events.
PLoS One. 2015 May 21;10(5):e0127877. doi: 10.1371/journal.pone.0127877. eCollection 2015.
8
Basis for substrate recognition and distinction by matrix metalloproteinases.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4148-55. doi: 10.1073/pnas.1406134111. Epub 2014 Sep 22.
9
Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island.
FEBS J. 2014 Jun;281(11):2487-502. doi: 10.1111/febs.12804. Epub 2014 Apr 22.
10
Quantitative FRET imaging to visualize the invasiveness of live breast cancer cells.
PLoS One. 2013;8(3):e58569. doi: 10.1371/journal.pone.0058569. Epub 2013 Mar 13.

本文引用的文献

2
Methods for mapping protease specificity.
Curr Opin Chem Biol. 2007 Feb;11(1):46-51. doi: 10.1016/j.cbpa.2006.11.021. Epub 2006 Dec 6.
3
WebLogo: a sequence logo generator.
Genome Res. 2004 Jun;14(6):1188-90. doi: 10.1101/gr.849004.
4
Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display.
J Biol Chem. 2003 Jul 25;278(30):27820-7. doi: 10.1074/jbc.M304436200. Epub 2003 May 8.
5
Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology.
Eur J Biochem. 2002 Jun;269(11):2747-54. doi: 10.1046/j.1432-1033.2002.02960.x.
6
Substrate hydrolysis by matrix metalloproteinase-9.
J Biol Chem. 2001 Jun 8;276(23):20572-8. doi: 10.1074/jbc.M100900200. Epub 2001 Mar 14.
7
Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library.
J Biol Chem. 2000 Oct 6;275(40):31422-7. doi: 10.1074/jbc.M004538200.
9
Substrate phage: selection of protease substrates by monovalent phage display.
Science. 1993 May 21;260(5111):1113-7. doi: 10.1126/science.8493554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验