Suppr超能文献

对小鼠Kcc1钾氯共转运体的化学交联研究。

Chemical crosslinking studies with the mouse Kcc1 K-Cl cotransporter.

作者信息

Casula Sabina, Zolotarev Alexander S, Stuart-Tilley Alan K, Wilhelm Sabine, Shmukler Boris E, Brugnara Carlo, Alper Seth L

机构信息

Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, USA.

出版信息

Blood Cells Mol Dis. 2009 May-Jun;42(3):233-40. doi: 10.1016/j.bcmd.2009.01.021.

Abstract

Oligomerization, function, and regulation of unmodified mouse Kcc1 K-Cl cotransporter were studied by chemical crosslinking. Treatment of Xenopus oocytes and 293T cells expressing K-Cl cotransporter Kcc1 with several types of chemical cross-linkers shifted Kcc1 polypeptide to higher molecular weight forms. More extensive studies were performed with the amine-reactive disuccinyl suberate (DSS) and with the sulfhydryl-reactive bis-maleimidohexane (BMH). Kcc1 cross-linking was time-dependent in intact oocytes, and was independent of protein concentration in detergent lysates from oocytes or 293T cells. Kcc1 cross-linking by the cleavable cross-linker DTME was reversible. The N-terminal and C-terminal cytoplasmic tails of Kcc1 were not essential for Kcc1 crosslinking. PFO-PAGE and gel filtration revealed oligomeric states of uncrosslinked KCC1 corresponding in mobility to that of cross-linked protein. DSS and BMH each inhibited KCC1-mediated (86)Rb(+) uptake stimulated by hypotonicity or by N-ethylmaleimide (NEM) without reduction in nominal surface abundance of KCC1. These data add to evidence supporting the oligomeric state of KCC polypeptides.

摘要

通过化学交联研究了未修饰的小鼠Kcc1钾氯共转运体的寡聚化、功能及调控。用几种类型的化学交联剂处理表达钾氯共转运体Kcc1的非洲爪蟾卵母细胞和293T细胞,可使Kcc1多肽转变为更高分子量的形式。使用胺反应性的辛二酸二琥珀酰亚胺酯(DSS)和巯基反应性的双马来酰亚胺己烷(BMH)进行了更广泛的研究。在完整的卵母细胞中,Kcc1交联具有时间依赖性,且与来自卵母细胞或293T细胞的去污剂裂解物中的蛋白质浓度无关。可裂解交联剂DTME介导的Kcc1交联是可逆的。Kcc1的N端和C端胞质尾巴对于Kcc1交联并非必需。PFO-PAGE和凝胶过滤显示未交联的KCC1的寡聚状态,其迁移率与交联蛋白的迁移率相对应。DSS和BMH均抑制由低渗或N-乙基马来酰亚胺(NEM)刺激的KCC1介导的(86)Rb(+)摄取,而不会降低KCC1的名义表面丰度。这些数据进一步支持了KCC多肽处于寡聚状态的证据。

相似文献

1
Chemical crosslinking studies with the mouse Kcc1 K-Cl cotransporter.
Blood Cells Mol Dis. 2009 May-Jun;42(3):233-40. doi: 10.1016/j.bcmd.2009.01.021.
3
Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation.
Am J Physiol. 1999 Nov;277(5):C899-912. doi: 10.1152/ajpcell.1999.277.5.C899.
4
Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells.
Am J Physiol. 1999 Feb;276(2):C328-36. doi: 10.1152/ajpcell.1999.276.2.C328.
6
Functional comparison of the K+-Cl- cotransporters KCC1 and KCC4.
J Biol Chem. 2000 Sep 29;275(39):30326-34. doi: 10.1074/jbc.M003112200.
7
Functional and molecular characterization of the K-Cl cotransporter of Xenopus laevis oocytes.
Am J Physiol Cell Physiol. 2001 Aug;281(2):C670-80. doi: 10.1152/ajpcell.2001.281.2.C670.
9
Molecular identification of K-CL cotransporter in dog erythroid progenitor cells.
J Biochem. 2004 Mar;135(3):365-74. doi: 10.1093/jb/mvh044.
10
Cryo-EM structures of the human cation-chloride cotransporter KCC1.
Science. 2019 Oct 25;366(6464):505-508. doi: 10.1126/science.aay3129.

引用本文的文献

1
Carfilzomib in multiple myeloma: unraveling cardiac toxicities - from mechanisms to diagnosis and management.
Front Pharmacol. 2025 Mar 27;16:1570017. doi: 10.3389/fphar.2025.1570017. eCollection 2025.
2
The biogenesis of potassium transporters: implications of disease-associated mutations.
Crit Rev Biochem Mol Biol. 2024 Jun-Aug;59(3-4):154-198. doi: 10.1080/10409238.2024.2369986. Epub 2024 Jul 1.
3
Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity.
Front Cell Neurosci. 2019 Feb 20;13:48. doi: 10.3389/fncel.2019.00048. eCollection 2019.
4
Molecular and evolutionary insights into the structural organization of cation chloride cotransporters.
Front Cell Neurosci. 2015 Jan 21;8:470. doi: 10.3389/fncel.2014.00470. eCollection 2014.
5
Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2.
Front Cell Neurosci. 2014 Feb 6;8:27. doi: 10.3389/fncel.2014.00027. eCollection 2014.
6
RNA binding by the NS3 protease of the hepatitis C virus.
Virus Res. 2012 Oct;169(1):80-90. doi: 10.1016/j.virusres.2012.07.007. Epub 2012 Jul 16.
8
Differences in the large extracellular loop between the K(+)-Cl(-) cotransporters KCC2 and KCC4.
J Biol Chem. 2010 Jul 30;285(31):23994-4002. doi: 10.1074/jbc.M110.144063. Epub 2010 Jun 1.

本文引用的文献

1
Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks.
Biochemistry. 2008 Dec 23;47(51):13674-85. doi: 10.1021/bi801368n.
2
The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.
J Cell Sci. 2008 Oct 15;121(Pt 20):3293-304. doi: 10.1242/jcs.029223.
4
Phase I study of magnesium pidolate in combination with hydroxycarbamide for children with sickle cell anaemia.
Br J Haematol. 2008 Jan;140(1):80-5. doi: 10.1111/j.1365-2141.2007.06884.x. Epub 2007 Nov 7.
5
Molecular physiology of the WNK kinases.
Annu Rev Physiol. 2008;70:329-55. doi: 10.1146/annurev.physiol.70.113006.100651.
7
Homooligomeric and heterooligomeric associations between K+-Cl- cotransporter isoforms and between K+-Cl- and Na+-K+-Cl- cotransporters.
J Biol Chem. 2007 Jun 22;282(25):18083-18093. doi: 10.1074/jbc.M607811200. Epub 2007 Apr 26.
8
K-Cl cotransport in red blood cells from patients with KCC3 isoform mutants.
Biochem Cell Biol. 2006 Dec;84(6):1034-44. doi: 10.1139/o06-203.
9
Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
Physiol Rev. 2005 Apr;85(2):423-93. doi: 10.1152/physrev.00011.2004.
10
Novel therapies for prevention of erythrocyte dehydration in sickle cell anemia.
Drug News Perspect. 2001 May;14(4):208-20. doi: 10.1358/dnp.2001.14.4.858404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验