Monti Maria, Cozzolino Marianna, Cozzolino Flora, Vitiello Giuseppina, Tedesco Roberta, Flagiello Angela, Pucci Piero
Dipartimento di Chimica Organica e Biochimica and CEINGE Biotecnologie Avanzate s.c.a r.l., Università di Napoli Federico II, Via Comunale Margherita, 482 80145, Napoli, Italy.
Expert Rev Proteomics. 2009 Apr;6(2):159-69. doi: 10.1586/epr.09.7.
Complete description of the complex network of cellular mechanisms and use of the network to predict the full range of cellular behaviors are major goals of systems biology. A key role in contemporary biology can be played by functional proteomics, which focuses on the elucidation of protein functions and the definition of cellular mechanisms at the molecular level. The attainment of these targets is strictly dependent on the identification of individual proteins within functional complexes in vivo. Isolation of interacting proteins relies on either affinity-based or immunoprecipitation procedures in which the protein bait and its specific partners can be fished out by their specific binding to ligand molecules immobilized on insoluble supports. These approaches led to the final identification of several proteins belonging to distinct complexes endowed with different biological functions. Assignment of each protein to a specific complex constitutes a tremendous problem that can only be partially solved using protein-protein interaction databases and literature information. The development of prefractionation methodologies to separate individual protein complexes while preserving their native interactions might then represent an essential tool for the future of functional proteomics. Prepurification of single complexes can only be pursued under native conditions on the basis of their physicochemical features, such as size, dimension (gel filtration chromatography) and density (gradient ultracentrifugation). Following prefractionation, the complex associated to a specific biological function can be isolated using affinity purification techniques. Functional proteomics approaches able to describe individual proteins belonging to complexes involved in specific cellular functions will have a terrific impact on future systems biology studies.
完整描述细胞机制的复杂网络以及利用该网络预测细胞行为的全部范围是系统生物学的主要目标。功能蛋白质组学在当代生物学中可发挥关键作用,它专注于阐明蛋白质功能以及在分子水平上定义细胞机制。实现这些目标严格依赖于在体内功能复合物中鉴定单个蛋白质。相互作用蛋白质的分离依赖于基于亲和力的方法或免疫沉淀程序,在这些方法中,蛋白质诱饵及其特定伙伴可通过与固定在不溶性支持物上的配体分子的特异性结合而被钓出。这些方法最终鉴定出了几种属于具有不同生物学功能的不同复合物的蛋白质。将每种蛋白质分配到特定复合物是一个巨大的问题,仅使用蛋白质 - 蛋白质相互作用数据库和文献信息只能部分解决。开发预分级方法以分离单个蛋白质复合物同时保留其天然相互作用,可能是功能蛋白质组学未来的一项重要工具。单个复合物的预纯化只能在天然条件下根据其物理化学特征进行,例如大小、尺寸(凝胶过滤色谱法)和密度(梯度超速离心法)。预分级后,可以使用亲和纯化技术分离与特定生物学功能相关的复合物。能够描述属于参与特定细胞功能的复合物的单个蛋白质的功能蛋白质组学方法将对未来的系统生物学研究产生巨大影响。