Alonso Hugo, Mendonça Teresa, Rocha Paula
Unidade de Investigação Matemática e Aplicações, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Neural Netw. 2009 May;22(4):450-62. doi: 10.1016/j.neunet.2009.01.015. Epub 2009 Mar 21.
This paper addresses the problem of using Hopfield Neural Networks (HNNs) for on-line parameter estimation. As presented here, a HNN is a nonautonomous nonlinear dynamical system able to produce a time-evolving estimate of the actual parameterization. The stability analysis of the HNN is carried out under more general assumptions than those previously considered in the literature, yielding a weaker sufficient condition under which the estimation error asymptotically converges to zero. Furthermore, a robustness analysis is made, showing that, under the presence of perturbations, the estimation error converges to a bounded neighbourhood of zero, whose size decreases with the size of the perturbations. The results obtained are illustrated by means of two case studies, where the HNN is compared with two other methods.
本文探讨了使用霍普菲尔德神经网络(HNNs)进行在线参数估计的问题。如本文所述,HNN是一个非自治非线性动力系统,能够生成实际参数化的随时间演变的估计值。与文献中先前考虑的假设相比,本文在更一般的假设下对HNN进行了稳定性分析,得出了一个较弱的充分条件,在该条件下估计误差渐近收敛于零。此外,还进行了鲁棒性分析,结果表明,在存在扰动的情况下,估计误差收敛到零的有界邻域,其大小随扰动大小的减小而减小。通过两个案例研究说明了所获得的结果,其中将HNN与其他两种方法进行了比较。