Merabia Samy, Keblinski Pawel, Joly Laurent, Lewis Laurent J, Barrat Jean-Louis
Université de Lyon, Université de Lyon I, Laboratoire de Physique de la Matière Condensée et des Nanostructures, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021404. doi: 10.1103/PhysRevE.79.021404. Epub 2009 Feb 10.
We study heat transfer from a heated nanoparticle into surrounding fluid using molecular dynamics simulations. We show that the fluid next to the nanoparticle can be heated well above its boiling point without a phase change. Under increasing nanoparticle temperature, the heat flux saturates, which is in sharp contrast with the case of flat interfaces, where a critical heat flux is observed followed by development of a vapor layer and heat flux drop. These differences in heat transfer are explained by the curvature-induced pressure close to the nanoparticle, which inhibits boiling. When the nanoparticle temperature is much larger than the critical fluid temperature, a very large temperature gradient develops, resulting in close to ambient temperature just a radius away from the particle surface. The behavior reported allows us to interpret recent experiments where nanoparticles can be heated up to the melting point, without observing boiling of the surrounding liquid.
我们使用分子动力学模拟研究了从加热的纳米颗粒到周围流体的热传递。我们表明,纳米颗粒附近的流体可以被加热到远高于其沸点而不发生相变。随着纳米颗粒温度的升高,热通量会饱和,这与平面界面的情况形成鲜明对比,在平面界面中会观察到临界热通量,随后会形成蒸汽层并导致热通量下降。这些热传递的差异是由纳米颗粒附近的曲率诱导压力所解释的,该压力抑制了沸腾。当纳米颗粒温度远高于临界流体温度时,会形成非常大的温度梯度,导致在距离颗粒表面仅一个半径处接近环境温度。所报道的行为使我们能够解释最近的实验,即在这些实验中纳米颗粒可以被加热到熔点,而周围液体却没有观察到沸腾现象。