Greulich Philip, Schadschneider Andreas
Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany and Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031107. doi: 10.1103/PhysRevE.79.031107. Epub 2009 Mar 11.
The asymmetric simple exclusion process with additional Langmuir kinetics, i.e., attachment and detachment in the bulk, is a paradigmatic model for intracellular transport. Here we study this model in the presence of randomly distributed inhomogeneities ("defects"). Using Monte Carlo simulations, we find a multitude of coexisting high- and low-density domains. The results are generic for one-dimensional driven diffusive systems with short-range interactions and can be understood in terms of a local extremal principle for the current profile. This principle is used to determine current profiles and phase diagrams as well as statistical properties of ensembles of defect samples.
具有附加朗缪尔动力学(即在主体中存在附着和脱离)的非对称简单排斥过程是细胞内运输的一个典型模型。在此,我们研究存在随机分布的不均匀性(“缺陷”)情况下的该模型。通过蒙特卡罗模拟,我们发现了大量共存的高密度和低密度区域。这些结果对于具有短程相互作用的一维驱动扩散系统具有普遍性,并且可以根据电流分布的局部极值原理来理解。该原理用于确定电流分布和相图以及缺陷样本集合的统计特性。