Hopkins Adam B, Stillinger Frank H, Torquato Salvatore
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031123. doi: 10.1103/PhysRevE.79.031123. Epub 2009 Mar 27.
Elementary smooth functions (beyond contact) are employed to construct pair correlation functions that mimic jammed disordered sphere packings. Using the g_{2} -invariant optimization method of Torquato and Stillinger [J. Phys. Chem. B 106, 8354 (2002)], parameters in these functions are optimized under necessary realizability conditions to maximize the packing fraction varphi and average number of contacts per sphere Z . A pair correlation function that incorporates the salient features of a disordered packing and that is smooth beyond contact is shown to permit a varphi of 0.6850: this value represents a 45% reduction in the difference between the maximum for congruent hard spheres in three dimensions, pi/sqrt[18] approximately 0.7405 and 0.64, the approximate fraction associated with maximally random jammed packings in three dimensions. We show that, surprisingly, the continued addition of elementary functions consisting of smooth sinusoids decaying as r;{-4} permits packing fractions approaching pi/sqrt[18] . A translational order metric is used to discriminate between degrees of order in the packings presented. We find that to achieve higher packing fractions, the degree of order must increase, which is consistent with the results of a previous study [Torquato, Phys. Rev. Lett. 84, 2064 (2000)].
使用初等光滑函数(超出接触范围)来构建成对相关函数,以模拟堵塞的无序球体堆积。利用Torquato和Stillinger的g₂不变优化方法[《物理化学杂志B》106, 8354 (2002)],在必要的可实现性条件下对这些函数中的参数进行优化,以使堆积分数φ和每个球体的平均接触数Z最大化。一个包含无序堆积显著特征且在接触范围之外光滑的成对相关函数被证明允许φ达到0.6850:该值表示三维中全等硬球体最大值(π/√18≈0.7405)与0.64(三维中最大随机堵塞堆积的近似分数)之间的差异减少了45%。我们表明,令人惊讶的是,持续添加由随r⁻⁴衰减的光滑正弦波组成的初等函数允许堆积分数接近π/√18。使用平移有序度量来区分所呈现堆积中的有序程度。我们发现,为了实现更高的堆积分数,有序程度必须增加,这与先前一项研究[Torquato,《物理评论快报》84, 2064 (2000)]的结果一致。