Franosch Thomas, Jeney Sylvia
Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031402. doi: 10.1103/PhysRevE.79.031402. Epub 2009 Mar 5.
We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex interplay due to the momentum relaxation of the particle, the vortex diffusion in the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap. We show that already a weak trapping force has a significant impact on the velocity autocorrelation function C(t)=v(t)v(0) at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results. Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas. The theoretical predictions are finally compared to recent experimental observations.
我们研究了单个光学捕获的胶体粒子在接近极限壁时的运动,时间尺度上周围流体的惯性起着重要作用。由于粒子的动量弛豫、流体中的涡旋扩散、靠近界面处的流动阻碍以及光学捕获产生的谐波恢复力,速度自相关函数呈现出复杂的相互作用。我们表明,在流体动力学记忆导致代数衰减的时刻,即使是微弱的捕获力也会对速度自相关函数(C(t)=\langle v(t)v(0)\rangle)产生显著影响。通过解析推导并与数值结果比较,得出了平行和垂直于壁的运动的长时间行为。然后,我们讨论了位移的功率谱密度,并给出了简单的插值公式。最后将理论预测与最近的实验观测结果进行了比较。