Berchenko Yakir, Artzy-Randrup Yael, Teicher Mina, Stone Lewi
Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
Phys Rev Lett. 2009 Apr 3;102(13):138701. doi: 10.1103/PhysRevLett.102.138701. Epub 2009 Mar 30.
Standard techniques for analyzing network models usually break down in the presence of clustering. Here we introduce a new analytic tool, the "free-excess degree" distribution, which extends the generating function framework, making it applicable for clustered networks (C>0). The methodology is general and provides a new expression for the threshold point at which the giant component emerges and shows that it scales as (1-C)(-1). In addition, the size of the giant component may be predicted even for more complicated scenarios such as the removal of a fixed fraction of nodes at random.
用于分析网络模型的标准技术在存在聚类的情况下通常会失效。在此,我们引入一种新的分析工具,即“自由超额度”分布,它扩展了生成函数框架,使其适用于聚类网络(C>0)。该方法具有通用性,并为巨型组件出现的阈值点提供了一个新的表达式,表明它按(1 - C)(-1)缩放。此外,即使在更复杂的情况下,如随机移除固定比例的节点,也可以预测巨型组件的大小。