Witte Bavo De, Langenhove Herman Van, Hemelsoet Karen, Demeestere Kristof, Wispelaere Patrick De, Van Speybroeck Veronique, Dewulf Jo
Research Group EnVOC, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
Chemosphere. 2009 Jul;76(5):683-9. doi: 10.1016/j.chemosphere.2009.03.048. Epub 2009 Apr 25.
Ozonation of the quinolone antibiotic levofloxacin was investigated with focus on both the levofloxacin degradation rate and degradation product formation. Degradation was about 2 times faster at pH 10 compared to pH 3 and 7 explained by direct ozonation at the unprotonated N4('), one of the tertiary amines of the piperazinyl substituent. H2O2 concentration (2-100 microM) had only limited effect. Liquid chromatography - high resolution mass spectrometry revealed degradation at the piperazinyl substituent and the quinolone moiety, with the relative importance of both pathways being strongly affected by changes in pH. Levofloxacin N-oxide concentrations reached up to 40% of the initial levofloxacin concentration during ozonation at pH 10. Degradation at the quinolone moiety resulted in isatin and anthranilic acid type metabolites, probably formed through reaction with hydroxyl radicals. Ab initio molecular orbital calculations predicted radical attack mainly at C2 of the quinolone moiety. This is the carbon atom with the largest Fukui function. Reaction with ozone is expected to mainly occur at N(4)('), characterized by the largest negative charge.
对喹诺酮类抗生素左氧氟沙星的臭氧化过程进行了研究,重点关注左氧氟沙星的降解速率和降解产物的形成。与pH值为3和7时相比,在pH值为10时降解速度快约2倍,这可以通过哌嗪基取代基的叔胺之一未质子化的N4(')处的直接臭氧化来解释。H2O2浓度(2 - 100 microM)的影响有限。液相色谱 - 高分辨率质谱显示哌嗪基取代基和喹诺酮部分发生降解,两种途径的相对重要性受pH值变化的强烈影响。在pH值为10的臭氧化过程中,左氧氟沙星N - 氧化物浓度达到初始左氧氟沙星浓度的40%。喹诺酮部分的降解产生了异吲哚酮和邻氨基苯甲酸类型的代谢物,可能是通过与羟基自由基反应形成的。从头算分子轨道计算预测自由基攻击主要发生在喹诺酮部分的C2处。这是福井函数最大的碳原子。预计与臭氧的反应主要发生在N(4)(')处,其特征是负电荷最大。