Suppr超能文献

一种用于确定拟南芥转录和转录后调控中上下文依赖作用的组合方法。

A combinatorial approach to determine the context-dependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana.

作者信息

Lu Le, Li Jinming

机构信息

Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.

出版信息

BMC Syst Biol. 2009 Apr 28;3:43. doi: 10.1186/1752-0509-3-43.

Abstract

BACKGROUND

While progresses have been made in mapping transcriptional regulatory networks, posttranscriptional regulatory roles just begin to be uncovered, which has arrested much attention due to the discovery of miRNAs. Here we demonstrated a combinatorial approach to incorporate transcriptional and posttranscriptional regulatory sequences with gene expression profiles to determine their probabilistic dependencies.

RESULTS

We applied the proposed method to microarray time course gene expression profiles and could correctly predict expression patterns for more than 50% of 1,132 genes, based on the sequence motifs adopted in the network models, which was statistically significant. Our study suggested that the contribution of miRNA regulation towards gene expression in plants may be more restricted than that of transcription factors; however, miRNAs might confer additional layers of robustness on gene regulation networks. The programs written in C++ and PERL implementing methods in this work are available for download from our supplemental data web page.

CONCLUSION

In this study we demonstrated a combinatorial approach to incorporate miRNA target motifs (miRNA-mediated posttranscriptional regulatory sites) and TFBSs (transcription factor binding sites) with gene expression profiles to reconstruct the regulatory networks. The proposed approach may facilitate the incorporation of diverse sources with limited prior knowledge.

摘要

背景

虽然在绘制转录调控网络方面已取得进展,但转录后调控作用才刚刚开始被揭示,由于微小RNA(miRNA)的发现,这已引起了广泛关注。在此,我们展示了一种组合方法,将转录和转录后调控序列与基因表达谱相结合,以确定它们的概率依赖性。

结果

我们将所提出的方法应用于微阵列时间进程基因表达谱,并基于网络模型中采用的序列基序,能够正确预测1132个基因中超过50%的基因的表达模式,这具有统计学意义。我们的研究表明,miRNA调控对植物基因表达的贡献可能比转录因子的贡献更具局限性;然而,miRNA可能会在基因调控网络上赋予额外的稳健性层次。本研究中用C++和PERL编写的实现这些方法的程序可从我们的补充数据网页下载。

结论

在本研究中,我们展示了一种组合方法,将miRNA靶基序(miRNA介导的转录后调控位点)和转录因子结合位点(TFBS)与基因表达谱相结合,以重建调控网络。所提出的方法可能有助于在有限的先验知识下整合多种来源的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c59f/2694151/be45170f5bc0/1752-0509-3-43-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验