Suppr超能文献

嗜温绿硫菌核糖核酸酶H1的结构、稳定性及折叠:与嗜热和嗜温同源物的比较

Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.

作者信息

Ratcliff Kathleen, Corn Jacob, Marqusee Susan

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, USA.

出版信息

Biochemistry. 2009 Jun 30;48(25):5890-8. doi: 10.1021/bi900305p.

Abstract

Proteins from thermophilic organisms are able to function under conditions that render a typical mesophilic protein inactive. Pairwise comparisons of homologous mesophilic and thermophilic proteins can help to identify the energetic features of a protein's energy landscape that lead to such thermostability. Previous studies of bacterial ribonucleases H (RNases H) from the thermophile Thermus thermophilus and the mesophile Escherichia coli revealed that the thermostability arises in part from an unusually low change in heat capacity upon unfolding (DeltaC(p)) for the thermophilic protein [Hollien, J., and Marqusee, S. (1999) Biochemistry 38, 3831-3836]. Here, we have further examined how nearly identical proteins can adapt to different thermal constraints by adding a moderately thermophilic homologue to the previously characterized mesophilic and thermophilic pair. We identified a putative RNase H from Chlorobium. tepidum and demonstrated that it is an active RNase H and adopts the RNase H fold. The moderately thermophilic protein has a melting temperature (T(m)) similar to that of the mesophilic homologue yet also has a surprisingly low DeltaC(p), like the thermophilic homologue. This new RNase H folds through a pathway similar to that of the previously studied RNases H. These results suggest that lowering the DeltaC(p) may be a general strategy for achieving thermophilicity for some protein families and implicate the folding core as the major contributor to this effect. It should now be possible to design RNases H that display the desired thermophilic or mesophilic properties, as defined by their DeltaC(p) values, and therefore fine-tune the energy landscape in a predictable fashion.

摘要

嗜热生物的蛋白质能够在使典型嗜温蛋白质失活的条件下发挥功能。同源嗜温蛋白质和嗜热蛋白质的成对比较有助于确定导致这种热稳定性的蛋白质能量景观的能量特征。先前对嗜热栖热菌和嗜温大肠杆菌的细菌核糖核酸酶H(RNases H)的研究表明,热稳定性部分源于嗜热蛋白质在展开时热容量的异常低变化(ΔC(p))[霍利恩,J.,和马库西,S.(1999年)《生物化学》38卷,3831 - 3836页]。在这里,我们通过在先前表征的嗜温与嗜热蛋白质对中添加一种中度嗜热同源物,进一步研究了几乎相同的蛋白质如何适应不同的热约束。我们从绿弯菌属嗜热栖热菌中鉴定出一种假定的核糖核酸酶H,并证明它是一种活性核糖核酸酶H且采用核糖核酸酶H折叠结构。这种中度嗜热蛋白质的解链温度(T(m))与嗜温同源物相似,但与嗜热同源物一样,其ΔC(p)也出奇地低。这种新的核糖核酸酶H通过与先前研究的核糖核酸酶H相似的途径折叠。这些结果表明,降低ΔC(p)可能是某些蛋白质家族实现嗜热性的通用策略,并暗示折叠核心是这种效应的主要贡献者。现在应该能够设计出具有所需嗜热或嗜温特性(由其ΔC(p)值定义)的核糖核酸酶H,从而以可预测的方式微调能量景观。

相似文献

3
A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
Biochemistry. 1999 Mar 23;38(12):3831-6. doi: 10.1021/bi982684h.
4
Contributions of folding cores to the thermostabilities of two ribonucleases H.
Protein Sci. 2002 Feb;11(2):381-9. doi: 10.1110/ps.38602.
5
The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history.
Biopolymers. 2018 Aug;109(8):e23086. doi: 10.1002/bip.23086. Epub 2017 Nov 20.
6
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13045-13050. doi: 10.1073/pnas.1611781113. Epub 2016 Oct 31.
7
Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
J Mol Biol. 2002 Feb 15;316(2):327-40. doi: 10.1006/jmbi.2001.5346.
8
An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
Protein Sci. 2006 Dec;15(12):2697-707. doi: 10.1110/ps.062398606. Epub 2006 Nov 6.
9
Structural distribution of stability in a thermophilic enzyme.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13674-8. doi: 10.1073/pnas.96.24.13674.
10
Role of residual structure in the unfolded state of a thermophilic protein.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11345-9. doi: 10.1073/pnas.1635051100. Epub 2003 Sep 22.

引用本文的文献

1
Correlation between chemical denaturation and the unfolding energetics of Acanthamoeba actophorin.
Biophys J. 2023 Jul 25;122(14):2921-2937. doi: 10.1016/j.bpj.2022.11.2941. Epub 2022 Dec 2.
2
Comparisons of Ribonuclease HI Homologs and Mutants Uncover a Multistate Model for Substrate Recognition.
J Am Chem Soc. 2022 Mar 30;144(12):5342-5349. doi: 10.1021/jacs.1c11897. Epub 2022 Mar 21.
4
Alanine to serine substitutions drive thermal adaptation in a psychrophilic diatom cytochrome c.
J Biol Inorg Chem. 2020 May;25(3):489-500. doi: 10.1007/s00775-020-01777-0. Epub 2020 Mar 27.
6
Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation.
Front Mol Biosci. 2018 Feb 6;5:4. doi: 10.3389/fmolb.2018.00004. eCollection 2018.
7
Thermostability of Enzymes from Molecular Dynamics Simulations.
J Chem Theory Comput. 2016 Jun 14;12(6):2489-92. doi: 10.1021/acs.jctc.6b00120. Epub 2016 May 6.
8
Structural features determining thermal adaptation of esterases.
Protein Eng Des Sel. 2016 Feb;29(2):65-76. doi: 10.1093/protein/gzv061. Epub 2015 Dec 7.
9
Structural origins of misfolding propensity in the platelet adhesive von Willebrand factor A1 domain.
Biophys J. 2015 Jul 21;109(2):398-406. doi: 10.1016/j.bpj.2015.06.008.
10
Thermodynamic system drift in protein evolution.
PLoS Biol. 2014 Nov 11;12(11):e1001994. doi: 10.1371/journal.pbio.1001994. eCollection 2014 Nov.

本文引用的文献

1
Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.
Mol Cell. 2007 Oct 26;28(2):264-76. doi: 10.1016/j.molcel.2007.08.015.
2
Structural and thermodynamic analyses of Escherichia coli RNase HI variant with quintuple thermostabilizing mutations.
FEBS J. 2007 Nov;274(22):5815-25. doi: 10.1111/j.1742-4658.2007.06104.x. Epub 2007 Oct 18.
4
Protein and DNA sequence determinants of thermophilic adaptation.
PLoS Comput Biol. 2007 Jan 12;3(1):e5. doi: 10.1371/journal.pcbi.0030005. Epub 2006 Nov 30.
5
Lessons in stability from thermophilic proteins.
Protein Sci. 2006 Jul;15(7):1569-78. doi: 10.1110/ps.062130306.
6
Direct observation of the three-state folding of a single protein molecule.
Science. 2005 Sep 23;309(5743):2057-60. doi: 10.1126/science.1116702.
7
Physics and evolution of thermophilic adaptation.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12742-7. doi: 10.1073/pnas.0503890102. Epub 2005 Aug 24.
10
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验