Neocleous Tereza, Portnoy Stephen
Department of Statistics, University of Glasgow, 15 University Gardens, Glasgow, UK.
Lifetime Data Anal. 2009 Sep;15(3):357-78. doi: 10.1007/s10985-009-9117-5. Epub 2009 May 6.
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates are assumed to act on the response through a non-linear function. Here the CRQ approach of Portnoy (J Am Stat Assoc 98:1001-1012, 2003) is extended to this partially linear setting. Basic consistency results are presented. A simulation experiment and unemployment example justify the value of the partially linear approach over methods based on the Cox proportional hazards model and on methods not permitting nonlinearity.
当认为标准线性模型适用时,删失回归分位数(CRQ)方法为删失生存数据的分析提供了一种强大且灵活的方法。然而,在许多情况下,人们希望有更大的灵活性,以超越通常的多元回归范式。一个共同感兴趣的领域是部分线性模型:假设一个(或多个)解释协变量通过非线性函数作用于响应变量。在此,将波特诺伊(《美国统计协会杂志》98:1001 - 1012,2003年)的CRQ方法扩展到这种部分线性设定。给出了基本的一致性结果。一个模拟实验和失业实例证明了部分线性方法相对于基于考克斯比例风险模型的方法以及不允许非线性的方法的价值。