Suppr超能文献

皮肤骨骼在非四足脊椎动物中的起源与演化。

Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates.

机构信息

Université Pierre & Marie Curie, UMR, Paris, France.

出版信息

J Anat. 2009 Apr;214(4):409-40. doi: 10.1111/j.1469-7580.2009.01046.x.

Abstract

Most non-tetrapod vertebrates develop mineralized extra-oral elements within the integument. Known collectively as the integumentary skeleton, these elements represent the structurally diverse skin-bound contribution to the dermal skeleton. In this review we begin by summarizing what is known about the histological diversity of the four main groups of integumentary skeletal tissues: hypermineralized (capping) tissues; dentine; plywood-like tissues; and bone. For most modern taxa, the integumentary skeleton has undergone widespread reduction and modification often rendering the homology and relationships of these elements confused and uncertain. Fundamentally, however, all integumentary skeletal elements are derived (alone or in combination) from only two types of cell condensations: odontogenic and osteogenic condensations. We review the origin and diversification of the integumentary skeleton in aquatic non-tetrapods (including stem gnathostomes), focusing on tissues derived from odontogenic (hypermineralized tissues, dentines and elasmodine) and osteogenic (bone tissues) cell condensations. The novelty of our new scenario of integumentary skeletal evolution resides in the demonstration that elasmodine, the main component of elasmoid scales, is odontogenic in origin. Based on available data we propose that elasmodine is a form of lamellar dentine. Given its widespread distribution in non-tetrapod lineages we further propose that elasmodine is a very ancient tissue in vertebrates and predict that it will be found in ancestral rhombic scales and cosmoid scales.

摘要

大多数非四足脊椎动物在表皮内发育出矿化的外骨骼元素。这些元素统称为表皮骨骼,它们代表了对真皮骨骼具有结构多样性的皮肤相关贡献。在这篇综述中,我们首先总结了四个主要的表皮骨骼组织类型的组织学多样性:超矿化(覆盖)组织;牙本质;胶合板样组织;和骨骼。对于大多数现代分类群,表皮骨骼经历了广泛的减少和修饰,这常常导致这些元素的同源性和关系变得混乱和不确定。然而,从根本上说,所有表皮骨骼元素都是由两种类型的细胞凝聚而来:牙源性和骨源性凝聚。我们回顾了水生非四足动物(包括颌弓类的原始脊椎动物)中表皮骨骼的起源和多样化,重点研究了牙源性(超矿化组织、牙本质和弹性蛋白)和骨源性(骨骼组织)细胞凝聚衍生的组织。我们的表皮骨骼进化新情景的新颖之处在于证明了弹性蛋白,弹性骨的主要成分,是牙源性的。基于现有数据,我们提出弹性蛋白是一种板层牙本质。鉴于其在非四足动物谱系中的广泛分布,我们进一步提出弹性蛋白是脊椎动物中一种非常古老的组织,并预测它将在原始菱形鳞片和余弦鳞片中被发现。

相似文献

1
Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates.
J Anat. 2009 Apr;214(4):409-40. doi: 10.1111/j.1469-7580.2009.01046.x.
2
The integumentary skeleton of tetrapods: origin, evolution, and development.
J Anat. 2009 Apr;214(4):441-64. doi: 10.1111/j.1469-7580.2008.01043.x.
3
Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues.
Biol Rev Camb Philos Soc. 1990 Aug;65(3):277-373. doi: 10.1111/j.1469-185x.1990.tb01427.x.
4
The dermal skeleton of the jawless vertebrate Tremataspis mammillata (Osteostraci, stem-Gnathostomata).
J Morphol. 2019 Jul;280(7):999-1025. doi: 10.1002/jmor.20997. Epub 2019 May 8.
6
Exceptional preservation and the fossil record of tetrapod integument.
Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.0556.
7
Origin and early evolution of vertebrate skeletonization.
Microsc Res Tech. 2002 Dec 1;59(5):352-72. doi: 10.1002/jemt.10217.
8
Histology of "placoderm" dermal skeletons: Implications for the nature of the ancestral gnathostome.
J Morphol. 2013 Jun;274(6):627-44. doi: 10.1002/jmor.20119. Epub 2013 Feb 2.
9
Elpistostege and the origin of the vertebrate hand.
Nature. 2020 Mar;579(7800):549-554. doi: 10.1038/s41586-020-2100-8. Epub 2020 Mar 18.

引用本文的文献

2
The living dinosaur: accomplishments and challenges of reconstructing dinosaur physiology.
Biol Lett. 2025 May;21(5):20250126. doi: 10.1098/rsbl.2025.0126. Epub 2025 May 29.
3
The evolutionary origin of sensitive dental structures.
Nature. 2025 Jun;642(8066):42-44. doi: 10.1038/d41586-025-01139-3.
4
Paleo-evo-devo implications of a revised conceptualization of enameloids and enamels.
Biol Rev Camb Philos Soc. 2025 Jun;100(3):1047-1066. doi: 10.1111/brv.13173. Epub 2024 Dec 18.
6
Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco .
Int J Vet Sci Med. 2024 Sep 4;12(1):101-124. doi: 10.1080/23144599.2024.2374201. eCollection 2024.
7
Increasing control over biomineralization in conodont evolution.
Nat Commun. 2024 Jun 20;15(1):5273. doi: 10.1038/s41467-024-49526-0.
8
The age and growth information of a ctenoid scale fossil from the Upper Cretaceous Nenjiang Formation in Songliao Basin, China.
PLoS One. 2024 May 3;19(5):e0303198. doi: 10.1371/journal.pone.0303198. eCollection 2024.
9
Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts.
Development. 2023 Dec 1;150(23). doi: 10.1242/dev.202168. Epub 2023 Dec 7.
10
Bony-fish-like scales in a Silurian maxillate placoderm.
Nat Commun. 2023 Nov 22;14(1):7622. doi: 10.1038/s41467-023-43557-9.

本文引用的文献

3
Comparison of teeth and dermal denticles (odontodes) in the teleost Denticeps clupeoides (Clupeomorpha).
J Morphol. 1998 Sep;237(3):237-255. doi: 10.1002/(SICI)1097-4687(199809)237:3<237::AID-JMOR3>3.0.CO;2-W.
6
A new scenario for the evolutionary origin of hair, feather, and avian scales.
J Anat. 2009 Apr;214(4):587-606. doi: 10.1111/j.1469-7580.2008.01041.x.
8
Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia.
J Anat. 2009 Apr;214(4):516-59. doi: 10.1111/j.1469-7580.2009.01066.x.
9
Current knowledge of tooth development: patterning and mineralization of the murine dentition.
J Anat. 2009 Apr;214(4):502-15. doi: 10.1111/j.1469-7580.2008.01014.x.
10
Evolutionary and developmental origins of the vertebrate dentition.
J Anat. 2009 Apr;214(4):465-76. doi: 10.1111/j.1469-7580.2009.01053.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验