Wahed Abdus S, Luong The Minh, Jeong Jong-Hyeon
Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Stat Med. 2009 Jul 20;28(16):2077-94. doi: 10.1002/sim.3598.
In this article, we propose a new generalization of the Weibull distribution, which incorporates the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (IEEE Trans. Reliab. 1993; 42:299-302) as a special case. We refer to the new family of distributions as the beta-Weibull distribution. We investigate the potential usefulness of the beta-Weibull distribution for modeling censored survival data from biomedical studies. Several other generalizations of the standard two-parameter Weibull distribution are compared with regards to maximum likelihood inference of the cumulative incidence function, under the setting of competing risks. These Weibull-based parametric models are fit to a breast cancer data set from the National Surgical Adjuvant Breast and Bowel Project. In terms of statistical significance of the treatment effect and model adequacy, all generalized models lead to similar conclusions, suggesting that the beta-Weibull family is a reasonable candidate for modeling survival data.
在本文中,我们提出了威布尔分布的一种新的推广形式,其中包含Mudholkar和Srivastava(《IEEE可靠性学报》,1993年;42:299 - 302)引入的指数化威布尔分布作为特殊情况。我们将新的分布族称为β - 威布尔分布。我们研究了β - 威布尔分布在对生物医学研究中删失生存数据进行建模方面的潜在用途。在竞争风险的设定下,就累积发病率函数的最大似然推断而言,将标准两参数威布尔分布的其他几种推广形式进行了比较。这些基于威布尔的参数模型被应用于来自国家外科辅助乳腺和肠道项目的乳腺癌数据集。就治疗效果的统计显著性和模型适配性而言,所有广义模型都得出了相似的结论,这表明β - 威布尔族是对生存数据进行建模的一个合理候选。