Huang Xiaoting, Sun Changbin, Chen Xiaoling, Qin Huijuan, Hu Mei, Yuan Yuan, Li Youzhi
College of Life Science and Technology, Guangxi University, Nanning 530005, China.
Sheng Wu Gong Cheng Xue Bao. 2009 Jan;25(1):76-83.
In order to effectively increase capacity of Cu2+ absorption by Penicillium from Cu2+-containing aqueous solution and to study the mechanisms of absorption, effects of eight pre-treatment methods on Cu2+ absorption of Penicillium janthinellum strain GXCR were compared. The results showed that the efficiency of Cu2+ absorption obviously increased through pre-treatment by homogenization, homogenization-basification (NaOH), oven dry (80 degrees C), homogenization-salinification (NaCl), homogenization-detergent and homogenization-polarization (C2H6SO), but significantly decreased after acidification pretreatment with H2SO4. In comparison with the previous reports, the pretreatment in a homogenization-NaOH way could more efficiently enhance the Cu2+ absorption capacity of this fungus. Homogenization-basification (0.5 mol/L NaOH) increased Cu2+ biosorption by 47.95%. The Cu2+ absorption of the mycelia treated by homogenization-basification followed Langmuir isotherm equation, suggesting a surface absorption process. After four cycles of absorption-desorption, mycelia pretreated by homogenization-alkalization still had 70.82% of Cu2+ biosorption efficiency. Infrared reflectance analysis indicated that alkalization treatment made marked effects on molecular groups of C-H, C=O, and C=O in COOH on the mycelial surfaces, and -OH was a key Cu2+-binding group. It is therefore suggested that the Cu2+ absorption by the GXCR is likely to be a chemical absorption process through Cu2+ binding with -OH group on the mycelia.