Suppr超能文献

[Effects of pre-treatment on Cu2+ absorption of Penicillium janthinellum strain GXCR].

作者信息

Huang Xiaoting, Sun Changbin, Chen Xiaoling, Qin Huijuan, Hu Mei, Yuan Yuan, Li Youzhi

机构信息

College of Life Science and Technology, Guangxi University, Nanning 530005, China.

出版信息

Sheng Wu Gong Cheng Xue Bao. 2009 Jan;25(1):76-83.

Abstract

In order to effectively increase capacity of Cu2+ absorption by Penicillium from Cu2+-containing aqueous solution and to study the mechanisms of absorption, effects of eight pre-treatment methods on Cu2+ absorption of Penicillium janthinellum strain GXCR were compared. The results showed that the efficiency of Cu2+ absorption obviously increased through pre-treatment by homogenization, homogenization-basification (NaOH), oven dry (80 degrees C), homogenization-salinification (NaCl), homogenization-detergent and homogenization-polarization (C2H6SO), but significantly decreased after acidification pretreatment with H2SO4. In comparison with the previous reports, the pretreatment in a homogenization-NaOH way could more efficiently enhance the Cu2+ absorption capacity of this fungus. Homogenization-basification (0.5 mol/L NaOH) increased Cu2+ biosorption by 47.95%. The Cu2+ absorption of the mycelia treated by homogenization-basification followed Langmuir isotherm equation, suggesting a surface absorption process. After four cycles of absorption-desorption, mycelia pretreated by homogenization-alkalization still had 70.82% of Cu2+ biosorption efficiency. Infrared reflectance analysis indicated that alkalization treatment made marked effects on molecular groups of C-H, C=O, and C=O in COOH on the mycelial surfaces, and -OH was a key Cu2+-binding group. It is therefore suggested that the Cu2+ absorption by the GXCR is likely to be a chemical absorption process through Cu2+ binding with -OH group on the mycelia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验