Suppr超能文献

具有记忆功能的细胞自动机的演化:密度分类任务。

Evolution of cellular automata with memory: The Density Classification Task.

作者信息

Stone Christopher, Bull Larry

机构信息

Department of Computer Science, University of the West of England, Bristol BS161QY, United Kingdom.

出版信息

Biosystems. 2009 Aug;97(2):108-16. doi: 10.1016/j.biosystems.2009.05.001. Epub 2009 May 12.

Abstract

The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.

摘要

密度分类任务是二态离散动力系统中一个著名的测试问题。多年来,研究人员使用了各种进化计算方法来求解这个问题。在本文中,我们研究了在基础细胞自动机中加入一种基于最小均方算法的记忆时解的可进化性。为了使用简单的非混合遗传算法获得高性能的解,我们基于用于学习分类器系统的三元表示设计了一种新颖的表示。结果发现,这种新表示能够产生比传统用于表示细胞自动机的位串更好的性能。此外,记忆被证明可以提高解的可进化性,并且适当的记忆设置能够作为这些解的一个组成部分而进化出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验