Suppr超能文献

激素反应中的基因网络信号传导可改变乳腺癌细胞中的细胞凋亡和自噬。

Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells.

作者信息

Clarke Robert, Shajahan Ayesha N, Riggins Rebecca B, Cho Younsook, Crawford Anatasha, Xuan Jianhua, Wang Yue, Zwart Alan, Nehra Ruchi, Liu Minetta C

机构信息

Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.

出版信息

J Steroid Biochem Mol Biol. 2009 Mar;114(1-2):8-20. doi: 10.1016/j.jsbmb.2008.12.023.

Abstract

Resistance to endocrine therapies, whether de novo or acquired, remains a major limitation in the ability to cure many tumors that express detectable levels of the estrogen receptor alpha protein (ER). While several resistance phenotypes have been described, endocrine unresponsiveness in the context of therapy-induced tumor growth appears to be the most prevalent. The signaling that regulates endocrine resistant phenotypes is poorly understood but it involves a complex signaling network with a topology that includes redundant and degenerative features. To be relevant to clinical outcomes, the most pertinent features of this network are those that ultimately affect the endocrine-regulated components of the cell fate and cell proliferation machineries. We show that autophagy, as supported by the endocrine regulation of monodansylcadaverine staining, increased LC3 cleavage, and reduced expression of p62/SQSTM1, plays an important role in breast cancer cells responding to endocrine therapy. We further show that the cell fate machinery includes both apoptotic and autophagic functions that are potentially regulated through integrated signaling that flows through key members of the BCL2 gene family and beclin-1 (BECN1). This signaling links cellular functions in mitochondria and endoplasmic reticulum, the latter as a consequence of induction of the unfolded protein response. We have taken a seed-gene approach to begin extracting critical nodes and edges that represent central signaling events in the endocrine regulation of apoptosis and autophagy. Three seed nodes were identified from global gene or protein expression analyses and supported by subsequent functional studies that established their abilities to affect cell fate. The seed nodes of nuclear factor kappa B (NFkappaB), interferon regulatory factor-1 (IRF1), and X-box binding protein-1 (XBP1)are linked by directional edges that support signal flow through a preliminary network that is grown to include key regulators of their individual function: NEMO/IKKgamma, nucleophosmin and ER respectively. Signaling proceeds through BCL2 gene family members and BECN1 ultimately to regulate cell fate.

摘要

对内分泌疗法的耐药性,无论是原发性还是获得性的,仍然是治愈许多表达可检测水平雌激素受体α蛋白(ER)的肿瘤的主要限制因素。虽然已经描述了几种耐药表型,但在治疗诱导的肿瘤生长背景下的内分泌无反应性似乎最为普遍。调节内分泌耐药表型的信号传导机制尚不清楚,但它涉及一个复杂的信号网络,其拓扑结构包括冗余和退化特征。为了与临床结果相关,该网络最相关的特征是那些最终影响细胞命运和细胞增殖机制中内分泌调节成分的特征。我们表明,自噬在内分泌调节单丹磺酰尸胺染色、增加LC3裂解和降低p62/SQSTM1表达的支持下,在乳腺癌细胞对内分泌治疗的反应中起重要作用。我们进一步表明,细胞命运机制包括凋亡和自噬功能,这些功能可能通过流经BCL2基因家族关键成员和贝克林-1(BECN1)的整合信号传导来调节。这种信号传导将线粒体和内质网中的细胞功能联系起来,内质网是未折叠蛋白反应诱导的结果。我们采用种子基因方法开始提取关键节点和边,这些节点和边代表内分泌调节凋亡和自噬中的核心信号事件。从全局基因或蛋白质表达分析中确定了三个种子节点,并得到后续功能研究的支持,这些研究证实了它们影响细胞命运的能力。核因子κB(NFκB)、干扰素调节因子-1(IRF1)和X盒结合蛋白-1(XBP1)的种子节点通过定向边相连,这些边支持信号流经一个初步网络,该网络不断扩展以包括其各自功能的关键调节因子:分别为NEMO/IKKγ、核磷蛋白和ER。信号通过BCL2基因家族成员和BECN1进行传递,最终调节细胞命运。

相似文献

1
Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells.
J Steroid Biochem Mol Biol. 2009 Mar;114(1-2):8-20. doi: 10.1016/j.jsbmb.2008.12.023.
4
Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate.
Cancer Res. 2015 Mar 15;75(6):1046-55. doi: 10.1158/0008-5472.CAN-14-1851. Epub 2015 Jan 9.
7
Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
Prog Neurobiol. 2013 Jul-Aug;106-107:33-54. doi: 10.1016/j.pneurobio.2013.06.002. Epub 2013 Jul 1.

引用本文的文献

1
Exploring new pathways in endocrine-resistant breast cancer.
Explor Target Antitumor Ther. 2022;3(3):337-361. doi: 10.37349/etat.2022.00086. Epub 2022 Jun 20.
6
Effects of ICI 182,780, an ERα and ERβ antagonist, and G-1, a GPER agonist, on autophagy in breast cancer cells.
Einstein (Sao Paulo). 2020 Apr 22;18:eAO4560. doi: 10.31744/einstein_journal/2020AO4560. eCollection 2020.
7
Glutamine Metabolism Drives Growth in Advanced Hormone Receptor Positive Breast Cancer.
Front Oncol. 2019 Aug 2;9:686. doi: 10.3389/fonc.2019.00686. eCollection 2019.
8
Post-menopausal breast cancer: from estrogen to androgen receptor.
Oncotarget. 2017 Oct 27;8(60):102739-102758. doi: 10.18632/oncotarget.22156. eCollection 2017 Nov 24.
9
Targeting protein quality control pathways in breast cancer.
BMC Biol. 2017 Nov 16;15(1):109. doi: 10.1186/s12915-017-0449-4.

本文引用的文献

1
Influence of Synthetic Oestrogens on Advanced Malignant Disease.
Br Med J. 1944 Sep 23;2(4368):393-8. doi: 10.1136/bmj.2.4368.393.
2
Knowledge-guided multi-scale independent component analysis for biomarker identification.
BMC Bioinformatics. 2008 Oct 6;9:416. doi: 10.1186/1471-2105-9-416.
3
Selective turnover of p62/A170/SQSTM1 by autophagy.
Autophagy. 2008 Nov;4(8):1063-6. doi: 10.4161/auto.6826. Epub 2008 Nov 20.
4
Structural basis for sorting mechanism of p62 in selective autophagy.
J Biol Chem. 2008 Aug 15;283(33):22847-57. doi: 10.1074/jbc.M802182200. Epub 2008 Jun 4.
6
Acquired estrogen independence and antiestrogen resistance in breast cancer: estrogen receptor driven phenotypes?
Trends Endocrinol Metab. 1996 Oct;7(8):291-301. doi: 10.1016/s1043-2760(96)00127-0.
8
Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy.
Cancer Res. 2008 Mar 1;68(5):1485-94. doi: 10.1158/0008-5472.CAN-07-0562.
9
Motif-directed network component analysis for regulatory network inference.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S21. doi: 10.1186/1471-2105-9-S1-S21.
10
PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells.
Autophagy. 2008 May;4(4):513-5. doi: 10.4161/auto.5725. Epub 2008 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验