Suppr超能文献

公羊中性伴侣偏好的神经生物学

The neurobiology of sexual partner preferences in rams.

作者信息

Roselli Charles E, Stormshak Fred

机构信息

Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, USA.

出版信息

Horm Behav. 2009 May;55(5):611-20. doi: 10.1016/j.yhbeh.2009.03.013.

Abstract

The question of what causes a male animal to seek out and choose a female as opposed to another male mating partner is unresolved and remains an issue of considerable debate. The most developed biologic theory is the perinatal organizational hypothesis, which states that perinatal hormone exposure mediates sexual differentiation of the brain. Numerous animal experiments have assessed the contribution of perinatal testosterone and/or estradiol exposure to the development of a male-typical mate preference, but almost all have used hormonally manipulated animals. In contrast, variations in sexual partner preferences occur spontaneously in domestic rams, with as many as 8% of the population exhibiting a preference for same-sex mating partners (male-oriented rams). Thus, the domestic ram is an excellent experimental model to study possible links between fetal neuroendocrine programming of neural mechanisms and adult sexual partner preferences. In this review, we present an overview of sexual differentiation in relation to sexual partner preferences. We then summarize results that test the relevance of the organizational hypothesis to expression of same-sex sexual partner preferences in rams. Finally, we demonstrate that the sexual differentiation of brain and behavior in sheep does not depend critically on aromatization of testosterone to estradiol.

摘要

与选择另一只雄性作为交配对象相反,是什么促使雄性动物寻找并选择雌性这一问题尚未得到解决,仍然是一个备受争议的话题。最完善的生物学理论是围产期组织假说,该假说认为围产期激素暴露介导了大脑的性别分化。众多动物实验评估了围产期睾酮和/或雌二醇暴露对雄性典型配偶偏好发展的作用,但几乎所有实验都使用了激素处理过的动物。相比之下,家养公羊的性伴侣偏好会自发出现变化,多达8%的公羊表现出对同性交配对象的偏好(雄性取向的公羊)。因此,家养公羊是研究胎儿神经内分泌对神经机制的编程与成年动物性伴侣偏好之间可能联系的优秀实验模型。在这篇综述中,我们概述了与性伴侣偏好相关的性别分化。然后我们总结了检验组织假说与公羊同性性伴侣偏好表达相关性的结果。最后,我们证明绵羊大脑和行为的性别分化并不关键地依赖于睾酮向雌二醇的芳香化作用。

相似文献

1
The neurobiology of sexual partner preferences in rams.
Horm Behav. 2009 May;55(5):611-20. doi: 10.1016/j.yhbeh.2009.03.013.
2
Prenatal programming of sexual partner preference: the ram model.
J Neuroendocrinol. 2009 Mar;21(4):359-64. doi: 10.1111/j.1365-2826.2009.01828.x.
3
The development of male-oriented behavior in rams.
Front Neuroendocrinol. 2011 Apr;32(2):164-9. doi: 10.1016/j.yfrne.2010.12.007. Epub 2011 Jan 6.
4
The ram as a model for behavioral neuroendocrinology.
Horm Behav. 2007 Jun;52(1):70-7. doi: 10.1016/j.yhbeh.2007.03.016. Epub 2007 Mar 31.
5
Sexual partner preference, hypothalamic morphology and aromatase in rams.
Physiol Behav. 2004 Nov 15;83(2):233-45. doi: 10.1016/j.physbeh.2004.08.017.
6
The ovine sexually dimorphic nucleus, aromatase, and sexual partner preferences in sheep.
J Steroid Biochem Mol Biol. 2010 Feb 28;118(4-5):252-6. doi: 10.1016/j.jsbmb.2009.10.009. Epub 2009 Oct 31.
8
Endocrine correlates of partner preference behavior in rams.
Biol Reprod. 1996 Jul;55(1):120-6. doi: 10.1095/biolreprod55.1.120.
10
Hormonal influences on sexual partner preference in rams.
Arch Sex Behav. 2002 Feb;31(1):43-9. doi: 10.1023/a:1014027101026.

引用本文的文献

1
Effects of pairing on color change and central gene expression in lined seahorses.
Genes Brain Behav. 2022 Jun;21(5):e12812. doi: 10.1111/gbb.12812. Epub 2022 Jun 2.
6
Ontogeny of cytochrome p450 aromatase mRNA expression in the developing sheep brain.
J Neuroendocrinol. 2012 Mar;24(3):443-52. doi: 10.1111/j.1365-2826.2011.02260.x.
7
The development of male-oriented behavior in rams.
Front Neuroendocrinol. 2011 Apr;32(2):164-9. doi: 10.1016/j.yfrne.2010.12.007. Epub 2011 Jan 6.
8
The genetics of sex differences in brain and behavior.
Front Neuroendocrinol. 2011 Apr;32(2):227-46. doi: 10.1016/j.yfrne.2010.10.001. Epub 2010 Oct 15.
9
Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.
Trends Endocrinol Metab. 2010 Sep;21(9):553-61. doi: 10.1016/j.tem.2010.05.004. Epub 2010 Jun 16.

本文引用的文献

1
What does the "four core genotypes" mouse model tell us about sex differences in the brain and other tissues?
Front Neuroendocrinol. 2009 Jan;30(1):1-9. doi: 10.1016/j.yfrne.2008.11.001. Epub 2008 Nov 11.
2
The volume of the ovine sexually dimorphic nucleus of the preoptic area is independent of adult testosterone concentrations.
Brain Res. 2009 Jan 16;1249:113-7. doi: 10.1016/j.brainres.2008.10.047. Epub 2008 Oct 31.
3
High fetal testosterone and sexually dimorphic cerebral networks in females.
Cereb Cortex. 2009 May;19(5):1167-74. doi: 10.1093/cercor/bhn160. Epub 2008 Oct 14.
4
PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects.
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9403-8. doi: 10.1073/pnas.0801566105. Epub 2008 Jun 16.
5
Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems.
Front Neuroendocrinol. 2008 Jun;29(3):358-74. doi: 10.1016/j.yfrne.2008.02.002. Epub 2008 Mar 5.
6
Changes in LH secretion in response to an estradiol challenge in male- and female-oriented rams and in ewes.
Reproduction. 2008 May;135(5):733-8. doi: 10.1530/REP-07-0505. Epub 2008 Feb 27.
7
Role for estradiol in female-typical brain and behavioral sexual differentiation.
Front Neuroendocrinol. 2008 Jan;29(1):1-16. doi: 10.1016/j.yfrne.2007.06.001. Epub 2007 Jul 26.
8
The ovine sexually dimorphic nucleus of the medial preoptic area is organized prenatally by testosterone.
Endocrinology. 2007 Sep;148(9):4450-7. doi: 10.1210/en.2007-0454. Epub 2007 May 31.
9
Androgen receptor is essential for sexual differentiation of responses to olfactory cues in mice.
Eur J Neurosci. 2007 Apr;25(7):2182-90. doi: 10.1111/j.1460-9568.2007.05484.x.
10
The control of sexual differentiation of the reproductive system and brain.
Reproduction. 2007 Feb;133(2):331-59. doi: 10.1530/REP-06-0078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验