Nowak Claudia-Nike, Fischer G, Neurauter A, Wieser L, Strohmenger H U
Institute of Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria.
Methods Inf Med. 2009;48(5):486-92. doi: 10.3414/ME0580. Epub 2009 May 15.
Spectral analysis of the ventricular fibrillation (VF) ECG has been used for predicting countershock success, where the Fast Fourier Transformation (FFT) is the standard spectral estimator. Autoregressive (AR) spectral estimation should compute the spectrum with less computation time. This study compares the predictive power and computational performance of features obtained by the FFT and AR methods.
In an animal model of VF cardiac arrest, 41 shocks were delivered in 25 swine. For feature parameter analysis, 2.5 s signal intervals directly before the shock and directly before the hands-off interval were used, respectively. Invasive recordings of the arterial pressure were used for assessing the outcome of each shock. For a proof of concept, a micro-controller program was implemented.
Calculating the area under the receiver operating characteristic (ROC) curve (AUC), the results of the AR-based features called spectral pole power (SPP) and spectral pole power with dominant frequency (DF) weighing (SPPDF) yield better outcome prediction results (85%; 89%) than common parameters based on FFT calculation method (centroid frequency (CF), amplitude spectrum area (AMSA)) (72%; 78%) during hands-off interval. Moreover, the predictive power of the feature parameters during ongoing CPR was not invalidated by closed-chest compressions. The calculation time of the AR-based parameters was nearly 2.5 times faster than the FFT-based features.
Summing up, AR spectral estimators are an attractive option compared to FFT due to the reduced computational speed and the better outcome prediction. This might be of benefit when implementing AR prediction features on the microprocessor of a semi-automatic defibrillator.
心室颤动(VF)心电图的频谱分析已用于预测除颤成功与否,其中快速傅里叶变换(FFT)是标准的频谱估计器。自回归(AR)频谱估计应以更少的计算时间来计算频谱。本研究比较了通过FFT和AR方法获得的特征的预测能力和计算性能。
在VF心脏骤停动物模型中,对25头猪进行了41次电击。为进行特征参数分析,分别使用电击前和松手间隔前的2.5秒信号间隔。动脉压的有创记录用于评估每次电击的结果。为进行概念验证,实施了一个微控制器程序。
计算受试者工作特征(ROC)曲线下面积(AUC),基于AR的特征(称为频谱极点功率(SPP)和具有主导频率(DF)加权的频谱极点功率(SPPDF))的结果在松手间隔期间产生的结果预测效果(85%;89%)优于基于FFT计算方法的常见参数(质心频率(CF)、幅度谱面积(AMSA))(72%;78%)。此外,正在进行心肺复苏期间特征参数的预测能力不会因胸外按压而失效。基于AR的参数的计算时间比基于FFT的特征快近2.5倍。
总之,与FFT相比,AR频谱估计器是一个有吸引力的选择,因为其计算速度降低且结果预测更好。在半自动除颤器的微处理器上实现AR预测特征时,这可能会有帮助。