Department of Medicine, Division of Immunology & Rheumatology, Stanford University, Stanford, CA 94305, USA.
Arthritis Res Ther. 2009;11(3):R76. doi: 10.1186/ar2706. Epub 2009 May 21.
INTRODUCTION: Anti-TNF therapies have revolutionized the treatment of rheumatoid arthritis (RA), a common systemic autoimmune disease involving destruction of the synovial joints. However, in the practice of rheumatology approximately one-third of patients demonstrate no clinical improvement in response to treatment with anti-TNF therapies, while another third demonstrate a partial response, and one-third an excellent and sustained response. Since no clinical or laboratory tests are available to predict response to anti-TNF therapies, great need exists for predictive biomarkers. METHODS: Here we present a multi-step proteomics approach using arthritis antigen arrays, a multiplex cytokine assay, and conventional ELISA, with the objective to identify a biomarker signature in three ethnically diverse cohorts of RA patients treated with the anti-TNF therapy etanercept. RESULTS: We identified a 24-biomarker signature that enabled prediction of a positive clinical response to etanercept in all three cohorts (positive predictive values 58 to 72%; negative predictive values 63 to 78%). CONCLUSIONS: We identified a multi-parameter protein biomarker that enables pretreatment classification and prediction of etanercept responders, and tested this biomarker using three independent cohorts of RA patients. Although further validation in prospective and larger cohorts is needed, our observations demonstrate that multiplex characterization of autoantibodies and cytokines provides clinical utility for predicting response to the anti-TNF therapy etanercept in RA patients.
简介:抗 TNF 治疗彻底改变了类风湿关节炎(RA)的治疗方法,RA 是一种常见的全身性自身免疫性疾病,涉及滑膜关节的破坏。然而,在风湿病学的实践中,大约三分之一的患者在接受抗 TNF 治疗时没有临床改善,另有三分之一的患者有部分反应,三分之一的患者有极好且持续的反应。由于目前尚无临床或实验室检测方法可预测抗 TNF 治疗的反应,因此非常需要预测性生物标志物。 方法:我们采用关节炎抗原阵列、多重细胞因子测定和常规 ELISA 等多步蛋白质组学方法,旨在确定三种不同种族的 RA 患者接受抗 TNF 治疗依那西普治疗后,生物标志物的特征。 结果:我们确定了一个 24 种生物标志物的特征,可以预测所有三个队列中依那西普的阳性临床反应(阳性预测值为 58%至 72%;阴性预测值为 63%至 78%)。 结论:我们确定了一种多参数蛋白生物标志物,可以在依那西普治疗前对患者进行分类和预测,并用三种独立的 RA 患者队列对该生物标志物进行了测试。尽管还需要在前瞻性和更大的队列中进行进一步验证,但我们的观察结果表明,自身抗体和细胞因子的多重特征分析可为预测 RA 患者对依那西普的抗 TNF 治疗反应提供临床应用价值。
Rheumatol Int. 2006-1
Open Access Rheumatol. 2024-5-18
Diagnostics (Basel). 2021-7-29
Arthritis Res Ther. 2020-5-7