Arning E T, Birgel D, Brunner B, Peckmann J
MARUM, Universität Bremen, Bremen, Germany.
Geobiology. 2009 Jun;7(3):295-307. doi: 10.1111/j.1472-4669.2009.00197.x. Epub 2009 May 19.
Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10 degrees 01' S and 10 degrees 24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS(2)) and sphalerite (ZnS). Low delta(34)S(pyrite) values (average -28.8 per thousand) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C(15:0), i/ai-C(17:0) and 10MeC(16:0)) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.
来自秘鲁陆架(南纬10°01′和南纬10°24′)磷质结壳中包裹的自生磷酸盐纹层岩由碳酸盐氟磷灰石层组成,其中含有丰富的硫化物矿物,包括黄铁矿(FeS₂)和闪锌矿(ZnS)。低的δ³⁴S(黄铁矿)值(平均为-28.8‰)与细菌硫酸盐还原作用及随后的黄铁矿形成相符。碳酸盐氟磷灰石中结合的硫酸盐的稳定硫同位素组成低于周围海水中的硫酸盐,表明硫化物被硫化物氧化细菌进行了细菌再氧化。磷的释放及随后自生磷酸盐纹层岩的形成显然是由硫酸盐还原细菌及相关的硫化物氧化细菌的活动引起的。经过萃取 - 磷质岩溶解 - 萃取程序后,发现硫酸盐还原细菌的分子化石(单 - O - 烷基甘油醚、二 - O - 烷基甘油醚以及短链支链脂肪酸i/ai - C₁₅:₀、i/ai - C₁₇:₀和10MeC₁₆:₀)是最丰富的化合物之一。这些硫酸盐还原细菌的分子化石在磷酸盐纹层岩溶解后明显更为丰富,这一事实表明这些脂质与碳酸盐氟磷灰石的矿物晶格紧密结合。此外,与自生纹层岩相比,硫酸盐还原细菌的分子化石在由磷酸盐包覆颗粒组成的秘鲁结壳的其他异地相中:(1)含量明显较少,(2)与矿物晶格的结合不那么紧密。这些观察结果证实了硫酸盐还原细菌在磷酸盐纹层岩形成中的重要性。模型计算突出表明,硫酸盐还原细菌对有机物的降解有潜力释放出足够的磷用于磷的形成。