Sonnemann Kevin J, Heun-Johnson Hanke, Turner Amy J, Baltgalvis Kristen A, Lowe Dawn A, Ervasti James M
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America.
PLoS Med. 2009 May 26;6(5):e1000083. doi: 10.1371/journal.pmed.1000083.
The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or DeltaR4-21 "micro" utrophin (muUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.
Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT), and increased specific force production (9.7+/-1.1 N/cm(2) versus 12.8+/-0.9 N/cm(2); PBS versus TAT).
These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.
肌营养不良蛋白的缺失会损害肌肉细胞膜的稳定性,导致杜兴氏肌营养不良症和/或各种形式的心肌病。通过基因传递或药物上调肌营养不良蛋白同源物抗肌萎缩蛋白聚糖的表达,已证明可恢复膜完整性并改善肌营养不良蛋白缺陷的mdx小鼠的表型。然而,由于人类缺乏可行的治疗方法,需要探索对抗肌营养不良蛋白缺乏的替代方法。我们研究了全身给予重组全长抗肌萎缩蛋白聚糖(Utr)或用细胞穿透性TAT蛋白转导结构域修饰的DeltaR4-21“微型”抗肌萎缩蛋白聚糖(muUtr)蛋白是否能减轻mdx小鼠的表型。
使用杆状病毒系统表达重组TAT-Utr和TAT-muUtr蛋白,并通过FLAG亲和层析进行纯化。年龄匹配的mdx小鼠每周两次腹腔注射重组蛋白或PBS,共注射六次。最后一次注射后三天,分析小鼠肌营养不良蛋白缺乏的几个表型参数。注射的TAT-muUtr转导了所有检测的组织,与肌营养不良蛋白复合物的成员整合,降低了血清肌酸激酶水平(11,290±920 U对5,950±1,120 U;PBS对TAT)、肌肉变性/再生的发生率(中央核纤维的54%±5%对37%±4%;PBS对TAT)、离心收缩诱导的力下降的易感性(72%±5%对40%±8%下降;PBS对TAT),并增加了比力产生(9.7±1.1 N/cm²对12.8±0.9 N/cm²;PBS对TAT)。
据我们所知,这些结果首次证实了基于TAT-抗肌萎缩蛋白聚糖构建体作为一种新型直接蛋白替代疗法治疗由肌营养不良蛋白缺失引起的骨骼肌和心肌疾病的有效性和可行性。