Suppr超能文献

将刚连续的金属薄膜转化为用于金属增强荧光的大颗粒基底。

Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence.

作者信息

Aslan Kadir, Malyn Stuart N, Zhang Yongxia, Geddes Chris D

出版信息

J Appl Phys. 2008 Apr 15;103(8):84307-843077. doi: 10.1063/1.2905319. Epub 2008 Apr 25.

Abstract

We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected.

摘要

我们报道了热退火处理对非连续、均匀和厚连续银膜的影响,这些银膜在金属增强荧光方面具有潜在应用,金属增强荧光是一种近场概念,可改变近距离荧光团(激发态)的自由空间吸收和发射特性。我们选择对5nm厚的非连续颗粒膜以及分别为15nm和25nm厚的两种较厚连续膜进行退火处理。我们的结果表明,当用单层荧光团标记蛋白包覆时,25nm膜的退火处理对近距离荧光影响很小。然而,15nm连续膜在退火时会开裂,产生大的纳米颗粒,这些纳米颗粒非常适合增强近距离荧光团的荧光,而通过其他湿化学沉积工艺确实很难制备这种荧光团。正如预期的那样,5nm非连续颗粒膜(对照样品)的退火处理对金属增强荧光影响很小。

相似文献

1
Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence.
J Appl Phys. 2008 Apr 15;103(8):84307-843077. doi: 10.1063/1.2905319. Epub 2008 Apr 25.
2
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
4
Fluorophore-Induced Plasmonic Current Generation from Copper Nanoparticle Films.
ACS Omega. 2024 May 24;9(23):25181-25188. doi: 10.1021/acsomega.4c02751. eCollection 2024 Jun 11.
5
Luminescent Blinking from Silver Nanostructures.
J Phys Chem B. 2003 Sep 18;107(37):9989-9993. doi: 10.1021/jp030290g.
6
Metal-Enhanced Fluorescence: Ultrafast Energy Transfer from Dyes in a Polymer Film to Metal Nanoparticles.
J Nanosci Nanotechnol. 2016 Feb;16(2):1629-32. doi: 10.1166/jnn.2016.12028.
7
Metal-enhanced Intrinsic Fluorescence of Proteins on Silver Nanostructured Surfaces towards Label-Free Detection.
J Phys Chem C Nanomater Interfaces. 2008;112(46):17957-17963. doi: 10.1021/jp807025n.
8
Voltage-gated metal-enhanced fluorescence II: Effects of fluorophore concentration on the magnitude of the gated-current.
J Fluoresc. 2009 Mar;19(2):369-74. doi: 10.1007/s10895-009-0460-4. Epub 2009 Jan 14.
9
Metal-enhanced fluorescence from plastic substrates.
J Fluoresc. 2005 Mar;15(2):99-104. doi: 10.1007/s10895-005-2515-5.
10
Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films.
J Phys Chem C Nanomater Interfaces. 2008 Nov 27;112(47):18368-18375. doi: 10.1021/jp806790u.

引用本文的文献

1
Fluorophore-Induced Plasmonic Current Generation from Copper Nanoparticle Films.
ACS Omega. 2024 May 24;9(23):25181-25188. doi: 10.1021/acsomega.4c02751. eCollection 2024 Jun 11.
2
Fluorophore-Induced Plasmonic Current Generation from Aluminum Nanoparticle Films.
J Phys Chem C Nanomater Interfaces. 2023 Jan 19;127(2):1126-1134. doi: 10.1021/acs.jpcc.2c07588. Epub 2023 Jan 4.
3
Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications.
J Phys Chem C Nanomater Interfaces. 2015 Jan 8;119(1):675-684. doi: 10.1021/jp509040f. Epub 2014 Dec 10.
6
Strong photoluminescence enhancement from colloidal quantum dot near silver nano-island films.
J Fluoresc. 2011 Mar;21(2):539-43. doi: 10.1007/s10895-010-0740-z. Epub 2010 Oct 9.
7
Metal-Enhanced Fluorescence (MEF): Physical Characterization of Siver-Island Films and Exploring Sample Geometries.
Chem Phys Lett. 2009 Aug 1;478(1-3):70-74. doi: 10.1016/j.cplett.2009.07.033.
8
Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century.
Chem Soc Rev. 2009 Sep;38(9):2556-64. doi: 10.1039/b807498b. Epub 2009 Jun 10.

本文引用的文献

3
Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence.
Langmuir. 2003 Jul 22;19(15):6236-6241. doi: 10.1021/la020930r.
6
Metal-enhanced e-type fluorescence.
Appl Phys Lett. 2008;92(1):13905. doi: 10.1063/1.2829798.
7
Metal-Enhanced S(2) Fluorescence from Azulene.
Chem Phys Lett. 2006 Dec 11;432(4-6):528-532. doi: 10.1016/j.cplett.2006.11.005.
9
Surface enhanced Raman with anodized aluminum oxide films.
J Chem Phys. 2007 Jul 28;127(4):044701. doi: 10.1063/1.2752498.
10
Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS.
Langmuir. 2007 Aug 14;23(17):8659-62. doi: 10.1021/la7007073. Epub 2007 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验