Suppr超能文献

分子内和分子间氢键在氨基芴酮的单重态和三重态激发态中的内转换、系间穿越和扭曲分子内电荷转移中的作用。

Role of intramolecular and intermolecular hydrogen bonding in both singlet and triplet excited states of aminofluorenones on internal conversion, intersystem crossing, and twisted intramolecular charge transfer.

机构信息

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

J Phys Chem A. 2009 Dec 31;113(52):14329-35. doi: 10.1021/jp903200x.

Abstract

Time-dependent density functional theory method was performed to investigate the intramolecular and intermolecular hydrogen bonding in both the singlet and triplet electronic excited states of aminofluorenones AF, MAF, and DMAF in alcoholic solutions as well as their important roles on the excited-state photophysical processes of these aminofluorenones, such as internal conversion, intersystem crossing (ISC), twisted intramolecular charge transfer (TICT), and so forth. The intramolecular hydrogen bond C=O...H-N can be formed between the carbonyl group and amino group for the isolated AF and MAF. However, no intramolecular hydrogen bond for DMAF can be formed. At the same time, the most stable conformation of DMAF is out-of-plane structure, where the two dihedral angles formed between dimethyl groups and fluorenone plane are 163.1 degrees and 41.74 degrees, respectively. The formation of intramolecular hydrogen bond for AF and MAF is tightly associated with the intersystem crossing of these aminofluorenones. Furthermore, the ISC process can be dominantly determined by the change of intramolecular hydrogen bond between S(1) and T(1) states of aminofluorenones. Since the change of hydrogen bond between S(1) and T(1) states of AF is stronger than that of MAF, the rate of ISC process for AF is faster than that for MAF. Moreover, the rate constant of the ISC process of DMAF is nearly close to zero because of the absence of intramolecular hydrogen bond. On the other hand, the intermolecular hydrogen bond C=O...H-O can be also formed between all aminofluorenones and alcoholic solvents. The internal conversion process from S(1) to S(0) state of these aminofluorenones is facilitated by the intermolecular hydrogen bond strengthening in the electronic excited state of aminofluorenones because of the decrease of energy gap between S(1) and S(0) states. At the same time, the change of intermolecular hydrogen bond between S(1) and T(1) states for AF is much stronger than that for MAF, which may also contribute to the faster ISC process for AF than that for MAF in the same solvents. The TICT process plays an important role in the deactivation of the photoexcited DMAF, since the TICT process along the twisted dihedral angle is nearly barrierless in the S(1) state of DMAF. However, the TICT cannot take place for AF and MAF because of the presence of the intramolecular hydrogen bond.

摘要

采用含时密度泛函理论方法研究了氨基芴酮 AF、MAF 和 DMAF 在醇溶液中单重态和三重态电子激发态中的分子内和分子间氢键,以及这些氨基芴酮的激发态光物理过程(如内转换、系间窜越(ISC)、扭曲的分子内电荷转移(TICT)等)中氢键的重要作用。孤立的 AF 和 MAF 可以在羰基和氨基之间形成分子内氢键 C=O...H-N。然而,DMAF 不能形成分子内氢键。同时,DMAF 最稳定的构象是平面外结构,其中两个二面角分别为 163.1 度和 41.74 度,由两个二甲基金属与芴酮平面形成。AF 和 MAF 中分子内氢键的形成与这些氨基芴酮的系间窜越密切相关。此外,ISC 过程主要由氨基芴酮 S(1)和 T(1)态之间分子内氢键的变化决定。由于 AF 和 MAF 中 S(1)和 T(1)态之间氢键的变化,AF 的 ISC 过程速率比 MAF 快。此外,由于缺乏分子内氢键,DMAF 的 ISC 过程速率常数几乎接近零。另一方面,所有氨基芴酮与醇溶剂之间也可以形成分子间氢键 C=O...H-O。这些氨基芴酮从 S(1)态到 S(0)态的内转换过程由于电子激发态中氨基芴酮的分子间氢键增强,降低了 S(1)和 S(0)态之间的能隙,从而得到促进。同时,AF 中 S(1)和 T(1)态之间的分子间氢键变化比 MAF 强得多,这也可能导致 AF 在相同溶剂中的 ISC 过程比 MAF 快。TICT 过程在激发态 DMAF 的失活中起着重要作用,因为在 DMAF 的 S(1)态中,沿着扭曲二面角的 TICT 过程几乎没有势垒。然而,由于存在分子内氢键,AF 和 MAF 不能发生 TICT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验