Ren Beibei, Ge Shuzhi Sam, Lee Tong Heng, Su Chun-Yi
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
IEEE Trans Neural Netw. 2009 Jul;20(7):1148-64. doi: 10.1109/TNN.2009.2016959. Epub 2009 May 27.
In this paper, adaptive variable structure neural control is investigated for a class of nonlinear systems under the effects of time-varying state delays and uncertain hysteresis inputs. The unknown time-varying delay uncertainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design, and the effect of the uncertain hysteresis with the Prandtl-Ishlinskii (PI) model representation is also mitigated using the proposed control. By utilizing the integral-type Lyapunov function, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded (SGUUB). Extensive simulation results demonstrate the effectiveness of the proposed approach.
本文研究了一类在时变状态延迟和不确定滞环输入影响下的非线性系统的自适应变结构神经控制。在设计中使用适当的Lyapunov-Krasovskii泛函来补偿未知的时变延迟不确定性,并且所提出的控制方法也减轻了具有Prandtl-Ishlinskii(PI)模型表示的不确定滞环的影响。通过利用积分型Lyapunov函数,证明闭环控制系统是半全局一致最终有界(SGUUB)的。大量的仿真结果证明了所提方法的有效性。