Suppr超能文献

人纤维环中溶质转运特性与组织形态的关系。

Relationship between solute transport properties and tissue morphology in human annulus fibrosus.

机构信息

Tissue Biomechanics Lab, Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, Florida 33124-0621, USA.

出版信息

J Orthop Res. 2009 Dec;27(12):1625-30. doi: 10.1002/jor.20927.

Abstract

Poor nutritional supply to the intervertebral disc is believed to be an important factor leading to disc degeneration. However, little is known regarding nutritional transport in human annulus fibrosus (AF) and its relation to tissue morphology. We hypothesized that solute diffusivity in human AF is anisotropic and inhomogeneous, and that transport behaviors are associated with tissue composition and structure. To test these hypotheses, we measured the direction-dependent diffusivity of a fluorescent molecule (fluorescein, 332 Da) in three regions of AF using a fluorescence recovery after photobleaching (FRAP) technique, and associated transport results to the regional variation in water content and collagen architecture in the tissue. Diffusivity in AF was anisotropic, with higher values in the axial direction than in the radial direction for all regions investigated. The values of the diffusion coefficient ranged from 0.38 +/- 0.25 x 10(-6) cm(2)/s (radial diffusivity in outer AF) to 2.68 +/- 0.84 x 10(-6) cm(2)/s (axial diffusivity in inner AF). In both directions, diffusivity decreased moving from inner to outer AF. Tissue structure was investigated using both scanning electron microscopy and environmental scanning electron microscopy. A unique arrangement of microtubes was found in human AF. Furthermore, we also found that the density of these microtubes varied moving from inner to outer AF. A similar trend of regional variation was found for water content, with the highest value also measured in inner AF. Therefore, we concluded that a relationship exists among the anisotropic and inhomogeneous diffusion in human AF and the structure and composition of the tissue.

摘要

人们认为椎间盘营养供应不足是导致椎间盘退变的一个重要因素。然而,关于人纤维环(annulus fibrosus,AF)的营养转运及其与组织形态的关系,人们知之甚少。我们假设人纤维环中的溶质扩散具有各向异性和非均一性,并且转运行为与组织成分和结构有关。为了验证这些假设,我们使用荧光恢复后漂白(fluorescence recovery after photobleaching,FRAP)技术,测量了荧光分子(荧光素,332 Da)在人纤维环三个区域的各向异性扩散率,并将转运结果与组织中水含量和胶原结构的区域性变化相关联。人纤维环中的扩散具有各向异性,在所有研究的区域中,轴向的扩散值均高于径向。扩散系数的值范围为 0.38 +/- 0.25 x 10(-6) cm(2)/s(外纤维环的径向扩散率)至 2.68 +/- 0.84 x 10(-6) cm(2)/s(内纤维环的轴向扩散率)。在两个方向上,扩散率均从内纤维环向外纤维环移动而减小。使用扫描电子显微镜和环境扫描电子显微镜研究了组织结构。在人纤维环中发现了一种独特的微管排列方式。此外,我们还发现,这些微管的密度从内纤维环向外纤维环移动而变化。水含量也存在类似的区域性变化趋势,在内纤维环中测量到的数值最高。因此,我们得出结论,人纤维环中各向异性和非均一性扩散与组织的结构和成分之间存在关系。

相似文献

2
Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique.
Ann Biomed Eng. 2007 Oct;35(10):1739-48. doi: 10.1007/s10439-007-9346-2. Epub 2007 Jun 29.
3
Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus.
Spine (Phila Pa 1976). 2008 Jan 1;33(1):1-7. doi: 10.1097/BRS.0b013e31815e4136.
4
Effect of mechanical loading on electrical conductivity in human intervertebral disk.
J Biomech Eng. 2009 May;131(5):054505. doi: 10.1115/1.3116152.
5
Nutrient transport in human annulus fibrosus is affected by compressive strain and anisotropy.
Ann Biomed Eng. 2012 Dec;40(12):2551-8. doi: 10.1007/s10439-012-0606-4. Epub 2012 Jun 6.
6
Relationship between anisotropic diffusion properties and tissue morphology in porcine TMJ disc.
Osteoarthritis Cartilage. 2013 Apr;21(4):625-33. doi: 10.1016/j.joca.2013.01.010. Epub 2013 Jan 24.
7
8
Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique.
Ann Biomed Eng. 2009 Apr;37(4):813-23. doi: 10.1007/s10439-009-9655-8. Epub 2009 Feb 18.
9
Strain-dependent oxygen diffusivity in bovine annulus fibrosus.
J Biomech Eng. 2009 Jul;131(7):074503. doi: 10.1115/1.3127254.
10
Molecular and macromolecular diffusion in human meniscus: relationships with tissue structure and composition.
Osteoarthritis Cartilage. 2020 Mar;28(3):375-382. doi: 10.1016/j.joca.2019.12.006. Epub 2020 Jan 7.

引用本文的文献

2
From structure to therapy: the critical influence of cartilaginous endplates and microvascular network on intervertebral disc degeneration.
Front Bioeng Biotechnol. 2024 Oct 28;12:1489420. doi: 10.3389/fbioe.2024.1489420. eCollection 2024.
3
Human mesenchymal stem/stromal cell-derived extracellular vesicle transport in meniscus fibrocartilage.
J Orthop Res. 2025 Feb;43(2):457-465. doi: 10.1002/jor.25993. Epub 2024 Oct 13.
4
Regenerative potential of mouse neonatal intervertebral disc depends on collagen crosslink density.
iScience. 2024 Sep 4;27(10):110883. doi: 10.1016/j.isci.2024.110883. eCollection 2024 Oct 18.
5
Unveiling interactions between intervertebral disc morphologies and mechanical behavior through personalized finite element modeling.
Front Bioeng Biotechnol. 2024 Jun 10;12:1384599. doi: 10.3389/fbioe.2024.1384599. eCollection 2024.
6
Assessing the role of surface layer and molecular probe size in diffusion within meniscus tissue.
PLoS One. 2024 Apr 16;19(4):e0301432. doi: 10.1371/journal.pone.0301432. eCollection 2024.
7
Improving Mechanical Properties of Tendon Allograft through Rehydration Strategies: An In Vitro Study.
Bioengineering (Basel). 2023 May 25;10(6):641. doi: 10.3390/bioengineering10060641.
9
Controversies in spine research: Organ culture versus in vivo models for studies of the intervertebral disc.
JOR Spine. 2022 Nov 28;5(4):e1235. doi: 10.1002/jsp2.1235. eCollection 2022 Dec.
10
Strain-Dependent Diffusivity of Small and Large Molecules in Meniscus.
J Biomech Eng. 2022 Nov 1;144(11). doi: 10.1115/1.4054931.

本文引用的文献

1
Strain-dependent oxygen diffusivity in bovine annulus fibrosus.
J Biomech Eng. 2009 Jul;131(7):074503. doi: 10.1115/1.3127254.
2
Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique.
Ann Biomed Eng. 2009 Apr;37(4):813-23. doi: 10.1007/s10439-009-9655-8. Epub 2009 Feb 18.
3
Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus.
Spine (Phila Pa 1976). 2008 Jan 1;33(1):1-7. doi: 10.1097/BRS.0b013e31815e4136.
4
Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique.
Ann Biomed Eng. 2007 Oct;35(10):1739-48. doi: 10.1007/s10439-007-9346-2. Epub 2007 Jun 29.
5
Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach.
Spine (Phila Pa 1976). 2006 Nov 15;31(24):2783-9. doi: 10.1097/01.brs.0000245842.02717.1b.
6
Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching.
Biophys J. 2006 Jul 1;91(1):311-6. doi: 10.1529/biophysj.105.075283. Epub 2006 Apr 7.
7
Particle migration and gap healing around trabecular metal implants.
Int Orthop. 2005 Dec;29(6):368-74. doi: 10.1007/s00264-005-0008-4. Epub 2005 Aug 31.
8
The influence of surface porosity on gap-healing around intra-articular implants in the presence of migrating particles.
Biomaterials. 2005 Aug;26(23):4728-36. doi: 10.1016/j.biomaterials.2004.11.058. Epub 2005 Jan 25.
9
Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity.
Ann Biomed Eng. 2004 Dec;32(12):1710-7. doi: 10.1007/s10439-004-7823-4.
10
Nutrition of the intervertebral disc.
Spine (Phila Pa 1976). 2004 Dec 1;29(23):2700-9. doi: 10.1097/01.brs.0000146499.97948.52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验