Suppr超能文献

马尔可夫不变量与四重树的各向同性子群。

Markov invariants and the isotropy subgroup of a quartet tree.

作者信息

Sumner J G, Jarvis P D

机构信息

School of Mathematics and Physics, University of Tasmania, TAS 7001, Australia.

出版信息

J Theor Biol. 2009 May 21;258(2):302-10. doi: 10.1016/j.jtbi.2009.01.021. Epub 2009 Feb 1.

Abstract

The purpose of this article is to show how the isotropy subgroup of leaf permutations on binary trees can be used to systematically identify tree-informative invariants relevant to models of phylogenetic evolution. In the quartet case, we give an explicit construction of the full set of representations and describe their properties. We apply these results directly to Markov invariants, thereby extending previous theoretical results by systematically identifying linear combinations that vanish for a given quartet. We also note that the theory is fully generalizable to arbitrary trees and is equally applicable to the related case of phylogenetic invariants. All results follow from elementary consideration of the representation theory of finite groups.

摘要

本文的目的是展示二叉树上叶排列的各向同性子群如何用于系统地识别与系统发育进化模型相关的树信息不变量。在四重奏的情况下,我们给出了全套表示的显式构造并描述了它们的性质。我们将这些结果直接应用于马尔可夫不变量,从而通过系统地识别对于给定四重奏消失的线性组合来扩展先前的理论结果。我们还注意到该理论可完全推广到任意树,并且同样适用于系统发育不变量的相关情况。所有结果都来自有限群表示理论的基本考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验