Kim Jin Hae, Füzéry Anna K, Tonelli Marco, Ta Dennis T, Westler William M, Vickery Larry E, Markley John L
Biophysics Graduate Program, University of Wisconsin, Madison, Wisconsin 53706, USA.
Biochemistry. 2009 Jul 7;48(26):6062-71. doi: 10.1021/bi9002277.
IscU is a scaffold protein that functions in iron-sulfur cluster assembly and transfer. Its critical importance has been recently underscored by the finding that a single intronic mutation in the human iscu gene is associated with a myopathy resulting from deficient succinate dehydrogenase and aconitase [Mochel, F., Knight, M. A., Tong, W. H., Hernandez, D., Ayyad, K., Taivassalo, T., Andersen, P. M., Singleton, A., Rouault, T. A., Fischbeck, K. H., and Haller, R. G. (2008) Am. J. Hum. Genet. 82, 652-660]. IscU functions through interactions with a chaperone protein HscA and a cochaperone protein HscB. To probe the molecular basis for these interactions, we have used NMR spectroscopy to investigate the solution structure of IscU from Escherichia coli and its interaction with HscB from the same organism. We found that wild-type apo-IscU in solution exists as two distinct conformations: one largely disordered and one largely ordered except for the metal binding residues. The two states interconvert on the millisecond time scale. The ordered conformation is stabilized by the addition of zinc or by the single-site IscU mutation, D39A. We used apo-IscU(D39A) as a surrogate for the folded state of wild-type IscU and assigned its NMR spectrum. These assignments made it possible to identify the region of IscU with the largest structural differences in the two conformational states. Subsequently, by following the NMR signals of apo-IscU(D39A) upon addition of HscB, we identified the most perturbed regions as the two N-terminal beta-strands and the C-terminal alpha-helix. On the basis of these results and analysis of IscU sequences from multiple species, we have identified the surface region of IscU that interacts with HscB. We conclude that the IscU-HscB complex exists as two (or more) distinct states that interconvert at a rate much faster than the rate of dissociation of the complex and that HscB binds to and stabilizes the ordered state of apo-IscU.
IscU是一种支架蛋白,在铁硫簇组装和转移过程中发挥作用。最近的一项发现凸显了其至关重要性,即人类iscu基因中的一个内含子突变与因琥珀酸脱氢酶和乌头酸酶缺乏导致的肌病相关[莫歇尔,F.,奈特,M. A.,汤,W. H.,埃尔南德斯,D.,阿亚德,K.,泰瓦萨洛,T.,安德森,P. M.,辛格尔顿,A.,鲁奥尔特,T. A.,菲施贝克,K. H.,以及哈勒,R. G.(2008年)《美国人类遗传学杂志》82卷,652 - 660页]。IscU通过与伴侣蛋白HscA和共伴侣蛋白HscB相互作用来发挥功能。为了探究这些相互作用的分子基础,我们利用核磁共振光谱研究了来自大肠杆菌的IscU的溶液结构及其与同一生物体中HscB的相互作用。我们发现溶液中的野生型脱辅基IscU以两种不同构象存在:一种大部分无序,另一种除金属结合残基外大部分有序。这两种状态在毫秒时间尺度上相互转换。通过添加锌或进行单点IscU突变D39A可使有序构象稳定。我们使用脱辅基IscU(D39A)作为野生型IscU折叠状态的替代物并对其核磁共振谱进行了归属。这些归属使得确定IscU在两种构象状态下结构差异最大的区域成为可能。随后,通过在添加HscB后追踪脱辅基IscU(D39A)的核磁共振信号,我们确定受影响最大的区域为两个N端β链和C端α螺旋。基于这些结果以及对多个物种IscU序列的分析,我们确定了IscU与HscB相互作用的表面区域。我们得出结论,IscU - HscB复合物以两种(或更多)不同状态存在,它们之间的相互转换速率比复合物解离速率快得多,并且HscB与脱辅基IscU的有序状态结合并使其稳定。