Suppr超能文献

饮食钾缺乏时肾脏钠-磷酸盐共转运体NaPi-IIa、NaPi-IIc和PiT-2的差异调节

Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.

作者信息

Breusegem Sophia Y, Takahashi Hideaki, Giral-Arnal Hector, Wang Xiaoxin, Jiang Tao, Verlander Jill W, Wilson Paul, Miyazaki-Anzai Shinobu, Sutherland Eileen, Caldas Yupanqui, Blaine Judith T, Segawa Hiroko, Miyamoto Ken-ichi, Barry Nicholas P, Levi Moshe

机构信息

Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA.

出版信息

Am J Physiol Renal Physiol. 2009 Aug;297(2):F350-61. doi: 10.1152/ajprenal.90765.2008. Epub 2009 Jun 3.

Abstract

Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.

摘要

膳食钾(K)缺乏伴随着磷酸盐尿以及肾刷状缘膜(BBM)囊泡钠(Na)依赖性磷酸盐(P(i))转运活性降低。我们实验室先前表明,大鼠钾缺乏会导致近端小管BBM顶端钠-磷酸盐共转运体NaPi-IIa丰度增加,但NaPi-IIa的活性、扩散和聚集可被钾缺乏BBM改变的脂质组成所调节(Zajicek HK、Wang H、Puttaparthi K、Halaihel N、Markovich D、Shayman J、Beliveau R、Wilson P、Rogers T、Levi M。《肾脏国际》60:694 - 704,2001;Inoue M、Digman MA、Cheng M、Breusegem SY、Halaihel N、Sorribas V、Mantulin WW、Gratton E、Barry NP、Levi M。《生物化学杂志》279:49160 - 49171,2004)。在此,我们研究了肾钠-磷酸盐共转运体NaPi-IIc和PiT-2在钾缺乏中的作用。使用蛋白质免疫印迹法、免疫荧光法和定量实时PCR,我们发现,在大鼠和小鼠中,钾缺乏与近端小管BBM中NaPi-IIc蛋白丰度以及NaPi-IIc mRNA的显著降低相关。此外,我们记录了肾BBM中第三种钠偶联磷酸盐转运体PiT-2的存在,其丰度在大鼠和小鼠中也因膳食钾缺乏而降低。最后,电子显微镜显示钾缺乏时NaPi-IIc发生亚细胞重新分布:在对照大鼠中,NaPi-IIc免疫标记主要位于BBM微绒毛中,而在钾缺乏大鼠中,NaPi-IIc的BBM标记减少,免疫标记在细胞质囊泡中普遍存在。总之,我们的结果表明,磷酸盐转运体NaPi-IIc以及PiT-2的BBM丰度降低可能导致膳食钾缺乏引起的磷酸盐尿,并且迄今为止所表征的三种肾BBM磷酸盐转运体可受到膳食扰动的差异调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c16/2724260/9621d194d5a9/zh20080956140001.jpg

相似文献

1
Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F350-61. doi: 10.1152/ajprenal.90765.2008. Epub 2009 Jun 3.
2
Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption.
Pflugers Arch. 2008 Nov;457(2):539-49. doi: 10.1007/s00424-008-0530-5. Epub 2008 Jun 6.
3
Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters.
Pflugers Arch. 2010 Aug;460(3):677-87. doi: 10.1007/s00424-010-0841-1. Epub 2010 Jun 5.
4
Magnesium stimulates renal phosphate reabsorption.
Am J Physiol Renal Physiol. 2008 Oct;295(4):F1126-33. doi: 10.1152/ajprenal.00353.2007. Epub 2008 Aug 13.
5
The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F691-9. doi: 10.1152/ajprenal.90623.2008. Epub 2008 Dec 10.
6
Does the composition of urinary extracellular vesicles reflect the abundance of renal Na/phosphate transporters?
Pflugers Arch. 2022 Nov;474(11):1201-1212. doi: 10.1007/s00424-022-02744-1. Epub 2022 Sep 8.
7
Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
Kidney Int. 2001 Aug;60(2):694-704. doi: 10.1046/j.1523-1755.2001.060002694.x.
9
FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F282-91. doi: 10.1152/ajprenal.90742.2008. Epub 2009 Jun 10.
10
Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
Toxicol Appl Pharmacol. 2008 Oct 1;232(1):125-34. doi: 10.1016/j.taap.2008.05.026. Epub 2008 Jun 10.

引用本文的文献

1
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment.
Pathophysiology. 2025 Jul 3;32(3):33. doi: 10.3390/pathophysiology32030033.
2
The Intricacies of Renal Phosphate Reabsorption-An Overview.
Int J Mol Sci. 2024 Apr 25;25(9):4684. doi: 10.3390/ijms25094684.
3
Diuretic Use and Serum Phosphate: Rotterdam Study and UK Biobank.
J Endocr Soc. 2024 Mar 25;8(5):bvae057. doi: 10.1210/jendso/bvae057. eCollection 2024 Mar 12.
5
Ablation of TRPC3 compromises bicarbonate and phosphate transporter activity in mice proximal tubular cells.
Clin Exp Pharmacol Physiol. 2023 Mar;50(3):247-255. doi: 10.1111/1440-1681.13741. Epub 2022 Dec 18.
6
NHE3 in the thick ascending limb is required for sustained but not acute furosemide-induced urinary acidification.
Am J Physiol Renal Physiol. 2022 Aug 1;323(2):F141-F155. doi: 10.1152/ajprenal.00013.2022. Epub 2022 May 30.
7
Targeted Disruption of a Proximal Tubule-Specific TMEM174 Gene in Mice Causes Hyperphosphatemia and Vascular Calcification.
J Am Soc Nephrol. 2022 Aug;33(8):1477-1486. doi: 10.1681/ASN.2021121578. Epub 2022 Apr 22.
8
Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification.
Antioxidants (Basel). 2022 Mar 2;11(3):494. doi: 10.3390/antiox11030494.
9
Cortisol and Phosphate Homeostasis: Cushing's Syndrome Is Associated With Reversible Hypophosphatemia.
Front Endocrinol (Lausanne). 2021 Sep 30;12:733793. doi: 10.3389/fendo.2021.733793. eCollection 2021.
10
Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease.
Pflugers Arch. 2020 Apr;472(4):449-460. doi: 10.1007/s00424-020-02370-9. Epub 2020 Mar 26.

本文引用的文献

1
The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F691-9. doi: 10.1152/ajprenal.90623.2008. Epub 2008 Dec 10.
2
Renal phosphate-transporter regulatory proteins and nephrolithiasis.
N Engl J Med. 2008 Sep 11;359(11):1171-3. doi: 10.1056/NEJMe0805943.
3
NHERF1 mutations and responsiveness of renal parathyroid hormone.
N Engl J Med. 2008 Sep 11;359(11):1128-35. doi: 10.1056/NEJMoa0802836.
4
Regulation of phosphate transport in proximal tubules.
Pflugers Arch. 2009 May;458(1):39-52. doi: 10.1007/s00424-008-0580-8. Epub 2008 Aug 29.
5
Of men and mice: who is in control of renal phosphate reabsorption?
J Am Soc Nephrol. 2008 Sep;19(9):1625-6. doi: 10.1681/ASN.2008060611. Epub 2008 Jul 23.
6
Novel NaPi-2c mutations that cause mistargeting of NaPi-2c protein and uncoupling of Na-Pi cotransport cause HHRH.
Am J Physiol Renal Physiol. 2008 Aug;295(2):F369-70. doi: 10.1152/ajprenal.90327.2008. Epub 2008 Jun 4.
8
Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins.
Kidney Int. 2008 Feb;73(4):456-64. doi: 10.1038/sj.ki.5002703. Epub 2007 Nov 28.
9
Phosphate transporters: a tale of two solute carrier families.
Am J Physiol Renal Physiol. 2007 Sep;293(3):F643-54. doi: 10.1152/ajprenal.00228.2007. Epub 2007 Jun 20.
10
Isolation of renal proximal tubular brush-border membranes.
Nat Protoc. 2007;2(6):1356-9. doi: 10.1038/nprot.2007.156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验