Suppr超能文献

Performance characteristics of a new generation pressure microsensor for physiologic applications.

作者信息

Cottler Patrick S, Karpen Whitney R, Morrow Duane A, Kaufman Kenton R

机构信息

Luna Innovations, Inc., 706 Forest Street, Suite A, Charlottesville, VA 22903, USA.

出版信息

Ann Biomed Eng. 2009 Aug;37(8):1638-45. doi: 10.1007/s10439-009-9718-x. Epub 2009 Jun 3.

Abstract

A next generation fiber-optic microsensor based on the extrinsic Fabry-Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 microm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0-250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles.

摘要

相似文献

1
Performance characteristics of a new generation pressure microsensor for physiologic applications.
Ann Biomed Eng. 2009 Aug;37(8):1638-45. doi: 10.1007/s10439-009-9718-x. Epub 2009 Jun 3.
2
Performance characteristics of a pressure microsensor.
J Biomech. 2003 Feb;36(2):283-7. doi: 10.1016/s0021-9290(02)00321-4.
3
Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.
Biosensors (Basel). 2015 Jul 13;5(3):432-49. doi: 10.3390/bios5030432.
4
Evaluating the dynamic performance of a fibre optic pressure microsensor.
Physiol Meas. 2005 Aug;26(4):N13-9. doi: 10.1088/0967-3334/26/4/N02. Epub 2005 Apr 22.
6
SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision.
Opt Express. 2012 Dec 3;20(25):27896-901. doi: 10.1364/OE.20.027896.
7
Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement.
Opt Lett. 2014 May 15;39(10):2827-30. doi: 10.1364/OL.39.002827.
9
Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser.
Sensors (Basel). 2010;10(12):11064-71. doi: 10.3390/s101211064. Epub 2010 Dec 6.

引用本文的文献

1
Micromachined Optical Fiber Sensors for Biomedical Applications.
Methods Mol Biol. 2022;2393:367-414. doi: 10.1007/978-1-0716-1803-5_20.
2
Sensor Anchoring Improves the Correlation Between Intramuscular Pressure and Muscle Tension in a Rabbit Model.
Ann Biomed Eng. 2021 Feb;49(2):912-921. doi: 10.1007/s10439-020-02633-7. Epub 2020 Oct 1.
4
Evaluating skeletal muscle electromechanical delay with intramuscular pressure.
J Biomech. 2018 Jul 25;76:181-188. doi: 10.1016/j.jbiomech.2018.05.029. Epub 2018 Jun 8.
6
Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements.
Ann Biomed Eng. 2017 Mar;45(3):739-746. doi: 10.1007/s10439-016-1703-6. Epub 2016 Aug 5.
7
Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg.
J Clin Monit Comput. 2016 Oct;30(5):699-705. doi: 10.1007/s10877-015-9750-3. Epub 2015 Aug 14.
8
Optical Fibre Pressure Sensors in Medical Applications.
Sensors (Basel). 2015 Jul 15;15(7):17115-48. doi: 10.3390/s150717115.
9
Use of a Poroelastic Model to Predict Intramuscular Pressure.
Poromechanics V (2013). 2013 Jul 10;2013:2174-2183. doi: 10.1061/9780784412992.256.
10
Internal pressure of human meniscal root attachments during loading.
J Orthop Res. 2013 Oct;31(10):1507-13. doi: 10.1002/jor.22408. Epub 2013 Jun 17.

本文引用的文献

1
Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors.
Opt Lett. 1991 Feb 15;16(4):273-5. doi: 10.1364/ol.16.000273.
3
Fiber-optic chemical sensors and biosensors.
Anal Chem. 2008 Jun 15;80(12):4269-83. doi: 10.1021/ac800473b.
4
Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature.
Anal Chem. 2007 Nov 15;79(22):8486-93. doi: 10.1021/ac070514h. Epub 2007 Oct 19.
5
The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases.
Acta Neurochir (Wien). 2006 Apr;148(4):435-41. doi: 10.1007/s00701-005-0683-3. Epub 2005 Dec 27.
6
Evaluating the dynamic performance of a fibre optic pressure microsensor.
Physiol Meas. 2005 Aug;26(4):N13-9. doi: 10.1088/0967-3334/26/4/N02. Epub 2005 Apr 22.
7
Biocompatibility of a physiological pressure sensor.
Biosens Bioelectron. 2003 Oct 30;19(1):51-8. doi: 10.1016/s0956-5663(03)00131-3.
8
Biocompatibility and biofouling of MEMS drug delivery devices.
Biomaterials. 2003 May;24(11):1959-67. doi: 10.1016/s0142-9612(02)00565-3.
10
Performance characteristics of a pressure microsensor.
J Biomech. 2003 Feb;36(2):283-7. doi: 10.1016/s0021-9290(02)00321-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验