Suppr超能文献

步态站立期的胫股关节运动学及髁运动

Tibiofemoral kinematics and condylar motion during the stance phase of gait.

作者信息

Kozanek Michal, Hosseini Ali, Liu Fang, Van de Velde Samuel K, Gill Thomas J, Rubash Harry E, Li Guoan

机构信息

Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital and Harvard Medical School, GRJ 1215, Boston, MA 02114, USA.

出版信息

J Biomech. 2009 Aug 25;42(12):1877-84. doi: 10.1016/j.jbiomech.2009.05.003. Epub 2009 Jun 3.

Abstract

Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior-posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion-extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4+/-2.0mm vs. 7.4+/-6.1mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).

摘要

准确了解膝关节在体内的动态运动,对于理解膝关节的正常和病理功能至关重要。然而,解释膝关节在矢状面以外的步态运动仍存在争议。在本研究中,我们利用双荧光透视成像技术,对8名健康志愿者以0.67 m/s的速度在跑步机上行走的站立期膝关节的六自由度运动学和髁运动进行了研究。我们假设,在步态中测量的六自由度膝关节运动学将不同于非负重活动中报告的运动学,特别是在股骨后滚现象方面。此外,我们假设在跑步机步态站立期,股骨内侧髁在横平面上的运动大于股骨外侧髁。股骨相对于胫骨的旋转运动和前后平移与站立期膝关节的屈伸路径显示出明显的关系。此外,我们观察到股骨后滚现象被逆转,股骨在伸展时向后移动,在屈曲时向前移动。此外我们还注意到,在步态站立期,股骨内侧髁在横平面上的运动大于股骨外侧髁(分别为17.4±2.0mm和7.4±6.1mm;p<0.01)。这一趋势与先前研究中在非负重屈曲或单腿弓步时观察到的情况相反。这些数据为理解正常生理学和分析步行过程中膝关节的病理功能提供了基线知识。这些发现进一步证明,膝关节运动学取决于活动,一种活动(非负重屈曲或弓步)不能一概而论地用来解释另一种活动(步态)。

相似文献

1
Tibiofemoral kinematics and condylar motion during the stance phase of gait.
J Biomech. 2009 Aug 25;42(12):1877-84. doi: 10.1016/j.jbiomech.2009.05.003. Epub 2009 Jun 3.
3
Motion of the femoral condyles in flexion and extension during a continuous lunge.
J Orthop Res. 2015 Apr;33(4):591-7. doi: 10.1002/jor.22826. Epub 2015 Feb 12.
4
Physiological articular contact kinematics and morphological femoral condyle translations of the tibiofemoral joint.
J Biomech. 2021 Jun 23;123:110536. doi: 10.1016/j.jbiomech.2021.110536. Epub 2021 May 15.
5
Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living.
Ann Biomed Eng. 2021 Apr;49(4):1183-1198. doi: 10.1007/s10439-020-02646-2. Epub 2020 Oct 22.
6
Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait.
PLoS One. 2017 Mar 24;12(3):e0174663. doi: 10.1371/journal.pone.0174663. eCollection 2017.
7
Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation.
Knee Surg Sports Traumatol Arthrosc. 2018 Jun;26(6):1645-1655. doi: 10.1007/s00167-017-4622-7. Epub 2017 Jun 27.
8
Kinematic characteristics of the tibiofemoral joint during a step-up activity.
Gait Posture. 2013 Sep;38(4):712-6. doi: 10.1016/j.gaitpost.2013.03.004. Epub 2013 Mar 28.
9
In vivo kinematics and ligamentous function of the knee during weight-bearing flexion: an investigation on mid-range flexion of the knee.
Knee Surg Sports Traumatol Arthrosc. 2020 Mar;28(3):797-805. doi: 10.1007/s00167-019-05499-y. Epub 2019 Apr 10.
10
Investigation of Characteristic Motion Patterns of the Knee Joint During a Weightbearing Flexion.
Ann Biomed Eng. 2023 Oct;51(10):2237-2244. doi: 10.1007/s10439-023-03259-1. Epub 2023 Jun 1.

引用本文的文献

1
[Medial pivot, bicruciate retaining and co: Evidence of modern insert and implant designs].
Orthopadie (Heidelb). 2025 Aug 7. doi: 10.1007/s00132-025-04694-9.
2
Reduced Muscle Strength Can Alter the Impact of Gait Modifications on Knee Cartilage Mechanics.
J Orthop Res. 2025 Sep;43(9):1566-1580. doi: 10.1002/jor.70007. Epub 2025 Jun 27.
5
Toward Self-Powered Load Imbalance Detection for Instrumented Knee Implants Using Quadrant Triboelectric Energy Harvesters.
IEEE Sens J. 2024 Nov 15;24(22):36487-36497. doi: 10.1109/jsen.2024.3466215. Epub 2024 Sep 30.
6
Sitting Sideways Causes Different Femoral-Tibial Rotations in Each Knee.
Cureus. 2024 May 5;16(5):e59678. doi: 10.7759/cureus.59678. eCollection 2024 May.
7
The relation between meniscal dynamics and tibiofemoral kinematics.
Sci Rep. 2024 Apr 17;14(1):8829. doi: 10.1038/s41598-024-59265-3.
8
9
The knee kinematic patterns and associated factors in healthy Thai adults.
BMC Musculoskelet Disord. 2023 Dec 5;24(1):940. doi: 10.1186/s12891-023-07081-7.
10
Validation and evaluation of subject-specific finite element models of the pediatric knee.
Sci Rep. 2023 Oct 26;13(1):18328. doi: 10.1038/s41598-023-45408-5.

本文引用的文献

1
In vivo cartilage contact deformation in the healthy human tibiofemoral joint.
Rheumatology (Oxford). 2008 Nov;47(11):1622-7. doi: 10.1093/rheumatology/ken345. Epub 2008 Sep 5.
2
The contralateral knee joint in cruciate ligament deficiency.
Am J Sports Med. 2008 Nov;36(11):2151-7. doi: 10.1177/0363546508319051. Epub 2008 Jul 14.
3
In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities.
J Biomech. 2008 Jul 19;41(10):2159-68. doi: 10.1016/j.jbiomech.2008.04.021. Epub 2008 Jun 5.
4
Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
J Biomech. 2008;41(7):1616-22. doi: 10.1016/j.jbiomech.2008.01.034. Epub 2008 Apr 3.
5
The knee joint center of rotation is predominantly on the lateral side during normal walking.
J Biomech. 2008;41(6):1269-73. doi: 10.1016/j.jbiomech.2008.01.013. Epub 2008 Mar 4.
6
Biomechanics of overground vs. treadmill walking in healthy individuals.
J Appl Physiol (1985). 2008 Mar;104(3):747-55. doi: 10.1152/japplphysiol.01380.2006. Epub 2007 Nov 29.
7
Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed.
J Biomech. 2007;40(8):1754-61. doi: 10.1016/j.jbiomech.2006.08.010. Epub 2006 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验