Dang Thao, Hoffmann Christian, Stiller Christoph
University of Karlsruhe, Germany.
IEEE Trans Image Process. 2009 Jul;18(7):1536-50. doi: 10.1109/TIP.2009.2017824. Epub 2009 Jun 2.
This paper presents a consistent framework for continuous stereo self-calibration. Based on a practical analysis of the sensitivity of stereo reconstruction to camera calibration uncertainties, we identify important parameters for self-calibration. We evaluate different geometric constraints for estimation and tracking of these parameters: bundle adjustment with reduced structure representation relating corresponding points in image sequences, the epipolar constraint between stereo image pairs, and trilinear constraints between image triplets. Continuous, recursive calibration refinement is obtained with a robust, adapted iterated extended Kalman filter. To achieve high accuracy, physically relevant geometric optimization criteria are formulated in a Gauss-Helmert type model. The self-calibration framework is tested on an active stereo system. Experiments with synthetic data as well as on natural indoor and outdoor imagery indicate that the different constraints are complementing each other and thus a method combining two of the above constraints is proposed: While reduced order bundle adjustment gives by far the most accurate results (and might suffice on its own in some environments), the epipolar constraint yields instantaneous calibration that is not affected by independently moving objects in the scene. Hence, it expedites and stabilizes the calibration process.
本文提出了一个用于连续立体视觉自校准的一致框架。基于对立体视觉重建对相机校准不确定性的敏感性的实际分析,我们确定了自校准的重要参数。我们评估了用于估计和跟踪这些参数的不同几何约束:使用简化结构表示的光束法平差来关联图像序列中的对应点、立体图像对之间的极线约束以及图像三元组之间的三线性约束。通过一个鲁棒的、自适应的迭代扩展卡尔曼滤波器实现连续的、递归的校准优化。为了实现高精度,在高斯 - 赫尔默特型模型中制定了与物理相关的几何优化标准。该自校准框架在一个主动立体视觉系统上进行了测试。使用合成数据以及自然室内和室外图像的实验表明,不同的约束相互补充,因此提出了一种结合上述两种约束的方法:虽然降阶光束法平差给出的结果最为精确(在某些环境中可能单独就足够了),但极线约束可产生不受场景中独立移动物体影响的即时校准。因此,它加快并稳定了校准过程。