Suppr超能文献

氨基糖苷类耐药甲基转移酶Sgm在核糖体A位点的相邻rRNA核苷酸处阻碍RsmF甲基化。

The aminoglycoside resistance methyltransferase Sgm impedes RsmF methylation at an adjacent rRNA nucleotide in the ribosomal A site.

作者信息

Cubrilo Sonja, Babić Fedora, Douthwaite Stephen, Maravić Vlahovicek Gordana

机构信息

Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.

出版信息

RNA. 2009 Aug;15(8):1492-7. doi: 10.1261/rna.1618809. Epub 2009 Jun 9.

Abstract

Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m(7)G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m(4)Cm1402 and m(5)C1407. Modification at m(5)C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m(4)Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell's own indigenous methyltransferases can play an important role in determining resistance levels.

摘要

靶向核糖体的抗生素通过结合细菌rRNA的功能重要区域来阻断蛋白质合成。耐药性通常是由于在rRNA区域的抗生素结合位点添加一个甲基而产生的,该区域已经被多个核苷酸甲基化高度修饰。在细菌rRNA中,每个甲基化都需要其自身特定的甲基转移酶,这就提出了一个问题,即如何容纳一个赋予抗生素耐药性的额外甲基转移酶,以及它如何在rRNA序列短且功能拥挤的片段内接近其核苷酸靶点。在这里,我们表明Sgm甲基转移酶通过在核糖体A位点引入16S rRNA修饰m(7)G1405来赋予对4,6-二取代脱氧链霉胺氨基糖苷类抗生素的耐药性。大肠杆菌16S rRNA的这个区域已经包含几个甲基化核苷酸,包括m(4)Cm1402和m(5)C1407。当Sgm接近其在30S核糖体亚基上的相邻G1405靶点时,甲基转移酶RsmF对m(5)C1407的修饰受到阻碍。一个在S-腺苷甲硫氨酸结合方面受损且赋予较低耐药性的Sgm突变体(G135A),在30S亚基上干扰RsmF甲基化的能力较弱。16S rRNA核苷酸m(4)Cm1402处的两个甲基化不受Sgm野生型和突变体版本的影响。数据表明,耐药甲基转移酶与细胞自身的天然甲基转移酶之间的相互作用在决定耐药水平方面可能起重要作用。

相似文献

2
Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases.
Antimicrob Agents Chemother. 2012 May;56(5):2335-41. doi: 10.1128/AAC.06066-11. Epub 2012 Feb 13.
3
Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs.
RNA Biol. 2013 Aug;10(8):1324-32. doi: 10.4161/rna.25984. Epub 2013 Aug 5.
5
YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407.
J Mol Biol. 2006 Jun 9;359(3):777-86. doi: 10.1016/j.jmb.2006.04.007. Epub 2006 Apr 21.
9
YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962.
J Mol Biol. 2008 Nov 14;383(3):641-51. doi: 10.1016/j.jmb.2008.08.061. Epub 2008 Aug 29.
10
What do we know about ribosomal RNA methylation in Escherichia coli?
Biochimie. 2015 Oct;117:110-8. doi: 10.1016/j.biochi.2014.11.019. Epub 2014 Dec 13.

引用本文的文献

1
Biological cost of aminoglycoside resistance Arm/Kam 16S rRNA methyltransferases from natural antibiotic producers and clinical pathogens.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0074225. doi: 10.1128/aac.00742-25. Epub 2025 Jul 31.
2
30S subunit recognition and G1405 modification by the aminoglycoside-resistance 16S ribosomal RNA methyltransferase RmtC.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2304128120. doi: 10.1073/pnas.2304128120. Epub 2023 Jun 12.
3
Ribosome-targeting antibiotics and resistance ribosomal RNA methylation.
RSC Med Chem. 2023 Mar 1;14(4):624-643. doi: 10.1039/d2md00459c. eCollection 2023 Apr 26.
5
16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis.
Protein J. 2022 Feb;41(1):97-130. doi: 10.1007/s10930-021-10029-2. Epub 2022 Feb 3.
7
The Pathogen-Derived Aminoglycoside Resistance 16S rRNA Methyltransferase NpmA Possesses Dual m1A1408/m1G1408 Specificity.
Antimicrob Agents Chemother. 2015 Dec;59(12):7862-5. doi: 10.1128/AAC.01872-15. Epub 2015 Sep 28.
10
Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs.
RNA Biol. 2013 Aug;10(8):1324-32. doi: 10.4161/rna.25984. Epub 2013 Aug 5.

本文引用的文献

1
Modified Nucleosides of Escherichia coli Ribosomal RNA.
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.4.6.1.
3
Critical residues for cofactor binding and catalytic activity in the aminoglycoside resistance methyltransferase Sgm.
J Bacteriol. 2008 Sep;190(17):5855-61. doi: 10.1128/JB.00076-08. Epub 2008 Jun 27.
6
Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil.
Antimicrob Agents Chemother. 2007 Mar;51(3):852-6. doi: 10.1128/AAC.01345-06. Epub 2006 Dec 11.
8
The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain.
J Mol Biol. 2006 Jul 21;360(4):774-87. doi: 10.1016/j.jmb.2006.05.047. Epub 2006 Jun 6.
9
YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407.
J Mol Biol. 2006 Jun 9;359(3):777-86. doi: 10.1016/j.jmb.2006.04.007. Epub 2006 Apr 21.
10
Aminoglycoside resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens.
J Mol Biol. 2006 Jun 2;359(2):358-64. doi: 10.1016/j.jmb.2006.03.038. Epub 2006 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验