Suppr超能文献

利用CDF处的神经进化选择的双轻子事件测量顶夸克质量。

Measurement of the top-quark mass with dilepton events selected using neuroevolution at CDF.

作者信息

Aaltonen T, Adelman J, Akimoto T, Albrow M G, Alvarez González B, Amerio S, Amidei D, Anastassov A, Annovi A, Antos J, Apollinari G, Apresyan A, Arisawa T, Artikov A, Ashmanskas W, Attal A, Aurisano A, Azfar F, Azzurri P, Badgett W, Barbaro-Galtieri A, Barnes V E, Barnett B A, Bartsch V, Bauer G, Beauchemin P-H, Bedeschi F, Bednar P, Beecher D, Behari S, Bellettini G, Bellinger J, Benjamin D, Beretvas A, Beringer J, Bhatti A, Binkley M, Bisello D, Bizjak I, Blair R E, Blocker C, Blumenfeld B, Bocci A, Bodek A, Boisvert V, Bolla G, Bortoletto D, Boudreau J, Boveia A, Brau B, Bridgeman A, Brigliadori L, Bromberg C, Brubaker E, Budagov J, Budd H S, Budd S, Burkett K, Busetto G, Bussey P, Buzatu A, Byrum K L, Cabrera S, Calancha C, Campanelli M, Campbell M, Canelli F, Canepa A, Carlsmith D, Carosi R, Carrillo S, Carron S, Casal B, Casarsa M, Castro A, Catastini P, Cauz D, Cavaliere V, Cavalli-Sforza M, Cerri A, Cerrito L, Chang S H, Chen Y C, Chertok M, Chiarelli G, Chlachidze G, Chlebana F, Cho K, Chokheli D, Chou J P, Choudalakis G, Chuang S H, Chung K, Chung W H, Chung Y S, Ciobanu C I, Ciocci M A, Clark A, Clark D, Compostella G, Convery M E, Conway J, Copic K, Cordelli M, Cortiana G, Cox D J, Crescioli F, Cuenca Almenar C, Cuevas J, Culbertson R, Cully J C, Dagenhart D, Datta M, Davies T, de Barbaro P, De Cecco S, Deisher A, De Lorenzo G, Dell'orso M, Deluca C, Demortier L, Deng J, Deninno M, Derwent P F, di Giovanni G P, Dionisi C, Di Ruzza B, Dittmann J R, D'Onofrio M, Donati S, Dong P, Donini J, Dorigo T, Dube S, Efron J, Elagin A, Erbacher R, Errede D, Errede S, Eusebi R, Fang H C, Farrington S, Fedorko W T, Feild R G, Feindt M, Fernandez J P, Ferrazza C, Field R, Flanagan G, Forrest R, Franklin M, Freeman J C, Furic I, Gallinaro M, Galyardt J, Garberson F, Garcia J E, Garfinkel A F, Genser K, Gerberich H, Gerdes D, Gessler A, Giagu S, Giakoumopoulou V, Giannetti P, Gibson K, Gimmell J L, Ginsburg C M, Giokaris N, Giordani M, Giromini P, Giunta M, Giurgiu G, Glagolev V, Glenzinski D, Gold M, Goldschmidt N, Golossanov A, Gomez G, Gomez-Ceballos G, Goncharov M, González O, Gorelov I, Goshaw A T, Goulianos K, Gresele A, Grinstein S, Grosso-Pilcher C, Grundler U, Guimaraes da Costa J, Gunay-Unalan Z, Haber C, Hahn K, Hahn S R, Halkiadakis E, Han B-Y, Han J Y, Handler R, Happacher F, Hara K, Hare D, Hare M, Harper S, Harr R F, Harris R M, Hartz M, Hatakeyama K, Hauser J, Hays C, Heck M, Heijboer A, Heinemann B, Heinrich J, Henderson C, Herndon M, Heuser J, Hewamanage S, Hidas D, Hill C S, Hirschbuehl D, Hocker A, Hou S, Houlden M, Hsu S-C, Huffman B T, Hughes R E, Husemann U, Huston J, Incandela J, Introzzi G, Iori M, Ivanov A, James E, Jayatilaka B, Jeon E J, Jha M K, Jindariani S, Johnson W, Jones M, Joo K K, Jun S Y, Jung J E, Junk T R, Kamon T, Kar D, Karchin P E, Kato Y, Kephart R, Keung J, Khotilovich V, Kilminster B, Kim D H, Kim H S, Kim J E, Kim M J, Kim S B, Kim S H, Kim Y K, Kimura N, Kirsch L, Klimenko S, Knuteson B, Ko B R, Koay S A, Kondo K, Kong D J, Konigsberg J, Korytov A, Kotwal A V, Kreps M, Kroll J, Krop D, Krumnack N, Kruse M, Krutelyov V, Kubo T, Kuhr T, Kulkarni N P, Kurata M, Kusakabe Y, Kwang S, Laasanen A T, Lami S, Lammel S, Lancaster M, Lander R L, Lannon K, Lath A, Latino G, Lazzizzera I, Lecompte T, Lee E, Lee S W, Leone S, Lewis J D, Lin C S, Linacre J, Lindgren M, Lipeles E, Lister A, Litvintsev D O, Liu C, Liu T, Lockyer N S, Loginov A, Loreti M, Lovas L, Lu R-S, Lucchesi D, Lueck J, Luci C, Lujan P, Lukens P, Lungu G, Lyons L, Lys J, Lysak R, Lytken E, Mack P, Macqueen D, Madrak R, Maeshima K, Makhoul K, Maki T, Maksimovic P, Malde S, Malik S, Manca G, Manousakis-Katsikakis A, Margaroli F, Marino C, Marino C P, Martin A, Martin V, Martínez M, Martínez-Ballarín R, Maruyama T, Mastrandrea P, Masubuchi T, Mattson M E, Mazzanti P, McFarland K S, McIntyre P, McNulty R, Mehta A, Mehtala P, Menzione A, Merkel P, Mesropian C, Miao T, Miladinovic N, Miller R, Mills C, Milnik M, Mitra A, Mitselmakher G, Miyake H, Moggi N, Moon C S, Moore R, Morello M J, Morlok J, Movilla Fernandez P, Mülmenstädt J, Mukherjee A, Muller Th, Mumford R, Murat P, Mussini M, Nachtman J, Nagai Y, Nagano A, Naganoma J, Nakamura K, Nakano I, Napier A, Necula V, Neu C, Neubauer M S, Nielsen J, Nodulman L, Norman M, Norniella O, Nurse E, Oakes L, Oh S H, Oh Y D, Oksuzian I, Okusawa T, Orava R, Osterberg K, Pagan Griso S, Pagliarone C, Palencia E, Papadimitriou V, Papaikonomou A, Paramonov A A, Parks B, Pashapour S, Patrick J, Pauletta G, Paulini M, Paus C, Pellett D E, Penzo A, Phillips T J, Piacentino G, Pianori E, Pinera L, Pitts K, Plager C, Pondrom L, Poukhov O, Pounder N, Prakoshyn F, Pronko A, Proudfoot J, Ptohos F, Pueschel E, Punzi G, Pursley J, Rademacker J, Rahaman A, Ramakrishnan V, Ranjan N, Redondo I, Reisert B, Rekovic V, Renton P, Rescigno M, Richter S, Rimondi F, Ristori L, Robson A, Rodrigo T, Rodriguez T, Rogers E, Rolli S, Roser R, Rossi M, Rossin R, Roy P, Ruiz A, Russ J, Rusu V, Saarikko H, Safonov A, Sakumoto W K, Saltó O, Santi L, Sarkar S, Sartori L, Sato K, Savoy-Navarro A, Scheidle T, Schlabach P, Schmidt A, Schmidt E E, Schmidt M A, Schmidt M P, Schmitt M, Schwarz T, Scodellaro L, Scott A L, Scribano A, Scuri F, Sedov A, Seidel S, Seiya Y, Semenov A, Sexton-Kennedy L, Sfyrla A, Shalhout S Z, Shears T, Shekhar R, Shepard P F, Sherman D, Shimojima M, Shiraishi S, Shochet M, Shon Y, Shreyber I, Sidoti A, Sinervo P, Sisakyan A, Slaughter A J, Slaunwhite J, Sliwa K, Smith J R, Snider F D, Snihur R, Soha A, Somalwar S, Sorin V, Spalding J, Spreitzer T, Squillacioti P, Stanitzki M, St Denis R, Stelzer B, Stelzer-Chilton O, Stentz D, Strologas J, Stuart D, Suh J S, Sukhanov A, Suslov I, Suzuki T, Taffard A, Takashima R, Takeuchi Y, Tanaka R, Tecchio M, Teng P K, Terashi K, Thom J, Thompson A S, Thompson G A, Thomson E, Tipton P, Tiwari V, Tkaczyk S, Toback D, Tokar S, Tollefson K, Tomura T, Tonelli D, Torre S, Torretta D, Totaro P, Tourneur S, Tu Y, Turini N, Ukegawa F, Vallecorsa S, van Remortel N, Varganov A, Vataga E, Vázquez F, Velev G, Vellidis C, Veszpremi V, Vidal M, Vidal R, Vila I, Vilar R, Vine T, Vogel M, Volobouev I, Volpi G, Würthwein F, Wagner P, Wagner R G, Wagner R L, Wagner-Kuhr J, Wagner W, Wakisaka T, Wallny R, Wang S M, Warburton A, Waters D, Weinberger M, Wester W C, Whitehouse B, Whiteson D, Whiteson S, Wicklund A B, Wicklund E, Williams G, Williams H H, Wilson P, Winer B L, Wittich P, Wolbers S, Wolfe C, Wright T, Wu X, Wynne S M, Xie S, Yagil A, Yamamoto K, Yamaoka J, Yang U K, Yang Y C, Yao W M, Yeh G P, Yoh J, Yorita K, Yoshida T, Yu G B, Yu I, Yu S S, Yun J C, Zanello L, Zanetti A, Zaw I, Zhang X, Zheng Y, Zucchelli S

机构信息

Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland.

出版信息

Phys Rev Lett. 2009 Apr 17;102(15):152001. doi: 10.1103/PhysRevLett.102.152001. Epub 2009 Apr 14.

Abstract

We report a measurement of the top-quark mass M_{t} in the dilepton decay channel tt[over ] --> bl;{'+} nu_{l};{'}b[over ]l;{-}nu[over ]{l}. Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb;{-1} of pp[over ] collisions collected with the CDF II detector, yielding a measurement of M{t} = 171.2 +/- 2.7(stat) +/- 2.9(syst) GeV / c;{2}.

摘要

我们报告了在双轻子衰变道(t\bar{t}\to b\ell^{+}\nu_{\ell}b\bar{\ell}^{-}\bar{\nu}{\ell})中顶夸克质量(M{t})的测量结果。事件通过一个神经网络进行选择,该网络已使用神经进化(一种基于生物进化建模的技术)针对顶夸克质量的统计精度进行了直接优化。顶夸克质量从通过领头阶矩阵元与探测器分辨率函数卷积形成的单事件概率密度中提取。联合概率是用CDF II探测器在(2.0) (fb^{-1})的(pp)碰撞中收集的344个候选事件的概率密度的乘积,得到(M_{t}=171.2\pm2.7)(统计)(\pm2.9)(系统)(GeV/c^{2})的测量结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验