Angelino P, Garbet X, Villard L, Bottino A, Jolliet S, Ghendrih Ph, Grandgirard V, McMillan B F, Sarazin Y, Dif-Pradalier G, Tran T M
Association Euratom-CEA, CEA/DSM/IRFM, Cadarache, France.
Phys Rev Lett. 2009 May 15;102(19):195002. doi: 10.1103/PhysRevLett.102.195002. Epub 2009 May 12.
The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.
等离子体湍流的理论研究对聚变研究至关重要。实验证据表明,约束时间主要源于能量的湍流输运,其大小取决于由非线性饱和机制导致的湍流状态,特别是相干宏观结构和大尺度流的自生成。等离子体几何形状对这些流的结构和大小有强烈影响,也会改变模式线性增长率。在实际托卡马克磁流体动力学平衡中的非线性全局陀螺动力学模拟展示了等离子体形状如何控制湍流输运。结果最好用有效温度梯度来描述。随着等离子体拉长比增加,非线性临界有效梯度不变,而输运的刚度在降低。