Oh Sang Soon, Lee Sun-Goo, Kim Jae-Eun, Park Hae Yong
Opt Express. 2007 Feb 5;15(3):1205-10. doi: 10.1364/oe.15.001205.
We demonstrate that surface waves in structured perfect electric conductor surfaces can be self-collimated using the finite-difference time-domain method. The self-collimation frequency is obtained from the equi-frequency contours of a perfect electric conductor patterned with an array of square holes. The field patterns of the self-collimated surface wave, obtained using the periodic boundary conditions, show that the surface waves propagate with almost no spreading. We also show that self-collimation phenomena can be observed for the hybrid surface plasmon waves in structured metal surfaces using the finite-difference time-domain method with the Drude model. It is shown that for a structured silver surface the self-collimation can be achieved at the frequencies in the infrared region.