Scheerer Patrick, Heck Martin, Goede Andrean, Park Jung Hee, Choe Hui-Woog, Ernst Oliver P, Hofmann Klaus Peter, Hildebrand Peter W
Institut für Medizinische Physik und Biophysik (CC2) and Institut für Biochemie, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10660-5. doi: 10.1073/pnas.0900072106. Epub 2009 Jun 17.
Extracellular signals prompt G protein-coupled receptors (GPCRs) to adopt an active conformation (R*) and catalyze GDP/GTP exchange in the alpha-subunit of intracellular G proteins (Galphabetagamma). Kinetic analysis of transducin (G(t)alphabetagamma) activation shows that an intermediary RxG(t)alphabetagamma.GDP complex is formed that precedes GDP release and formation of the nucleotide-free RxG protein complex. Based on this reaction sequence, we explore the dynamic interface between the proteins during formation of these complexes. We start from the R* conformation stabilized by a G(t)alpha C-terminal peptide (GalphaCT) obtained from crystal structures of the GPCR opsin. Molecular modeling allows reconstruction of the fully elongated C-terminal alpha-helix of G(t)alpha (alpha5) and shows how alpha5 can be docked to the open binding site of R*. Two modes of interaction are found. One of them--termed stable or S-interaction--matches the position of the GalphaCT peptide in the crystal structure and reproduces the hydrogen-bonding networks between the C-terminal reverse turn of GalphaCT and conserved E(D)RY and NPxxY(x)(5,6)F regions of the GPCR. The alternative fit--termed intermediary or I-interaction--is distinguished by a tilt (42 degrees ) and rotation (90 degrees ) of alpha5 relative to the S-interaction and shows different alpha5 contacts with the NPxxY(x)(5,6)F region and the second cytoplasmic loop of R*. From the 2 alpha5 interactions, we derive a "helix switch" mechanism for the transition of RxG(t)alphabetagamma.GDP to the nucleotide-free RxG protein complex that illustrates how alpha5 might act as a transmission rod to propagate the conformational change from the receptor-G protein interface to the nucleotide binding site.
细胞外信号促使G蛋白偶联受体(GPCRs)采用活性构象(R*),并催化细胞内G蛋白(Galphabetagamma)α亚基中的GDP/GTP交换。对转导素(G(t)alphabetagamma)激活的动力学分析表明,在GDP释放和无核苷酸的RxG蛋白复合物形成之前,会形成一个中间的RxG(t)alphabetagamma.GDP复合物。基于这个反应序列,我们探索了这些复合物形成过程中蛋白质之间的动态界面。我们从通过GPCR视蛋白晶体结构获得的G(t)α C末端肽(GalphaCT)稳定的R构象开始。分子建模允许重建G(t)α的完全伸长的C末端α螺旋(α5),并展示了α5如何对接至R的开放结合位点。发现了两种相互作用模式。其中一种——称为稳定或S相互作用——与晶体结构中GalphaCT肽的位置匹配,并重现了GalphaCT的C末端反向转角与GPCR保守的E(D)RY和NPxxY(x)(5,6)F区域之间的氢键网络。另一种匹配——称为中间或I相互作用——的特征是α5相对于S相互作用倾斜(42度)并旋转(90度),并且显示出α5与R的NPxxY(x)(5,6)F区域和第二个细胞质环有不同的接触。从这两种α5相互作用中,我们推导出一种“螺旋开关”机制,用于RxG(t)alphabetagamma.GDP向无核苷酸的R*xG蛋白复合物的转变,该机制说明了α5可能如何作为一根传动杆,将构象变化从受体 - G蛋白界面传播至核苷酸结合位点。