Pushparaj Peter N, Manikandan Jayapal, Tay Hwee Kee, H'ng Shiau Chen, Kumar Srinivasan D, Pfeilschifter Josef, Huwiler Andrea, Melendez Alirio J
Glasgow Biomedical Research Centre, University of Glasgow, Scotland, United Kingdom.
J Immunol. 2009 Jul 1;183(1):221-7. doi: 10.4049/jimmunol.0803430.
Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.
肥大细胞脱颗粒对于过敏性疾病至关重要;研究触发肥大细胞脱颗粒的新途径无疑具有重要的治疗潜力。根据不同报道,FcepsilonRI介导的脱颗粒矛盾地显示需要SphK1或SphK2。我们使用特异性小干扰RNA基因沉默技术,研究了SphK1和SphK2在FcepsilonRI介导的反应中的体外和体内特定作用。肥大细胞中SphK1的小干扰RNA敲低抑制了FcepsilonRI刺激引发的几种信号传导机制和效应功能,包括:Ca(2+)信号、NFkappaB激活、脱颗粒、细胞因子/趋化因子以及类花生酸生成,而沉默SphK2则完全没有影响。此外,在不同品系小鼠体内沉默SPHK1强烈抑制了肥大细胞介导的过敏反应,包括抑制血管通透性、组织肥大细胞脱颗粒、体温变化以及血清组胺和细胞因子水平,而沉默SPHK2则没有效果,小鼠发生了过敏反应。我们的数据与最近一篇使用SPHK1(-/-)和SPHK2(-/-)小鼠的报道不同,该报道显示SphK2是FcepsilonRI介导的肥大细胞反应所必需的。我们在源自SPHK1(-/-)和SPHK2(-/-)小鼠的肥大细胞中进行了实验,结果表明FcepsilonRI交联引发的钙反应和脱颗粒与野生型细胞中引发的反应没有差异。此外,基因敲除小鼠中IgE介导的过敏反应在体温变化和血清组胺水平方面与野生型小鼠相似,表明两种基因敲除小鼠都没有免受过敏反应的影响。因此,我们的数据强烈提示基因敲除小鼠中存在一种先前未被认识的补偿机制,并确立了SphK1在IgE介导的肥大细胞反应中的作用。