Howie Bryan N, Donnelly Peter, Marchini Jonathan
Department of Statistics, University of Oxford, Oxford, UK.
PLoS Genet. 2009 Jun;5(6):e1000529. doi: 10.1371/journal.pgen.1000529. Epub 2009 Jun 19.
Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%-20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.
基因型填充方法目前正广泛应用于全基因组关联研究分析中。迄今为止,大多数填充分析都使用HapMap作为参考数据集,但新的参考面板(如在多个SNP芯片上进行基因分型的对照样本以及来自千人基因组计划的高密度分型样本)将很快使得更广泛的SNP能够以更高的准确性被填充,从而提高检验效能。我们描述了一种基因型填充方法(IMPUTE版本2),该方法旨在应对这些新数据集带来的挑战。我们方法的主要创新之处在于一个灵活的建模框架,它提高了准确性,整合了多个参考面板的信息,同时在计算上仍然可行。我们发现,当HapMap作为唯一的参考面板时,IMPUTE v2比其他方法具有更高的准确性,但面板的大小限制了所能取得的改进。我们还发现,通过将参考面板扩展到包含数千条染色体,可以大大提高填充准确性,并且在这种情况下,IMPUTE v2在罕见和常见SNP方面均优于其他方法,总体错误率比最接近的竞争方法低15% - 20%。下一代关联研究中一个特别具有挑战性的方面是整合在不同SNP集上进行基因分型的多个参考面板的信息;我们表明,我们解决这个问题的方法相对于其他建议的解决方案具有实际优势。