Mei Zhangrong, Zhao Daomu
Opt Express. 2007 Sep 17;15(19):11942-51. doi: 10.1364/oe.15.011942.
The concept of vectorial Laguerre-Bessel-Gaussian (LBG) beams is proposed. On the basis of vectorial Rayleigh-Sommerfeld formulas, the analytical formulas for the nonparaxial propagation of vectorial LBG beams are derived and applied to study the nonparaxial propagation properties of vectorial LBG beams. The far field and paraxial approximation are dealt with as special cases of our general results. Some detailed comparisons of the obtained results with the paraxial results are made, which show the propagation of paraxial and nonparaxial LBG beams is all instable in the near field and the f parameter plays the important role in determining the nonparaxiality of vectorial LBG beams. The beam parameter alpha also affects the propagation behavior of nonparaxial LBG beams. Under certain conditions, the obtained results can be reduced to those of the cases for vectorial Laguerre-Gaussian and Bessel Gaussian beams.
提出了矢量拉盖尔 - 贝塞尔 - 高斯(LBG)光束的概念。基于矢量瑞利 - 索末菲公式,推导了矢量LBG光束非傍轴传播的解析公式,并将其应用于研究矢量LBG光束的非傍轴传播特性。远场和傍轴近似作为我们一般结果的特殊情况来处理。对所得结果与傍轴结果进行了一些详细比较,结果表明傍轴和非傍轴LBG光束在近场的传播都是不稳定的,并且f参数在确定矢量LBG光束的非傍轴性方面起着重要作用。光束参数α也影响非傍轴LBG光束的传播行为。在某些条件下,所得结果可以简化为矢量拉盖尔 - 高斯光束和贝塞尔 - 高斯光束情况的结果。