Subramania Ganapathi, Lee Yun-Ju, Brener Igal, Luk Ting-Shan, Clem Paul G
Opt Express. 2007 Oct 1;15(20):13049-57. doi: 10.1364/oe.15.013049.
Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.
光子晶体(PC)已成为光操控的重要结构类型。通过创建具有完整三维(3D)带隙的光子晶体,可以实现对光的终极控制[1,2]。在可见光和紫外光频率范围内,这已被证明是一项相当大的挑战,主要是因为将透明、高折射率(n)材料与制造技术相结合以创建具有长程平移有序的约100nm特征存在复杂性。在本信函中,我们展示了一种基于多级电子束直写和物理气相沉积的纳米光刻方法,用于制造四层二氧化钛木堆光子晶体,该晶体在可见波长下可能呈现完整的3D带隙。我们用晶格常数为300nm的光子晶体实现了525nm的短波长带边。由于纳米级精度和缺陷控制能力,该纳米光刻方法代表了朝着用于照明、激光、传感和生物光子学的新型可见光光子器件迈出的重要一步。