Suppr超能文献

红光和蓝光在调控拟南芥基因表达及发育过程中的协同作用。

Synergism of red and blue light in the control of Arabidopsis gene expression and development.

作者信息

Sellaro Romina, Hoecker Ute, Yanovsky Marcelo, Chory Joanne, Casal Jorge J

机构信息

IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, and CONICET, Av. San Martín 4453, 1417-Buenos Aires, Argentina.

出版信息

Curr Biol. 2009 Jul 28;19(14):1216-20. doi: 10.1016/j.cub.2009.05.062. Epub 2009 Jun 25.

Abstract

The synergism between red and blue light in the control of plant growth and development requires the coaction of the red light photoreceptor phytochrome B (phyB) and the blue light and UV-A receptor cryptochromes (cry). Here, we describe the mechanism of the coaction of these photoreceptors in controlling both development and physiology. In seedlings grown under red light, a transient supplement with blue light induced persistent changes in the transcriptome and growth patterns. Blue light enhanced the expression of the transcription factors LONG HYPOCOTYL 5 (HY5) and HOMOLOG OF HY5 (HYH) and of SUPPRESSOR OF PHYA 1 (SPA1) and SPA4. HY5 and HYH enhanced phyB signaling output beyond the duration of the blue light signal, and, contrary to their known role as repressors of phyA signaling, SPA1 and SPA4 also enhanced phyB signaling. These observations demonstrate that the mechanism of synergism involves the promotion by cry of positive regulators of phyB signaling. The persistence of the light-derived signal into the night commits the seedling to a morphogenetic and physiological program consistent with a photosynthetic lifestyle.

摘要

红光和蓝光在控制植物生长发育方面的协同作用需要红光光感受器光敏色素B(phyB)与蓝光和UV-A受体隐花色素(cry)共同作用。在此,我们描述了这些光感受器在控制发育和生理过程中的共同作用机制。在红光下生长的幼苗中,短暂补充蓝光会诱导转录组和生长模式发生持续变化。蓝光增强了转录因子长下胚轴5(HY5)、HY5同源物(HYH)以及phyA抑制因子1(SPA1)和SPA4的表达。HY5和HYH在蓝光信号持续时间之外增强了phyB信号输出,并且与它们作为phyA信号抑制因子的已知作用相反,SPA1和SPA4也增强了phyB信号。这些观察结果表明,协同作用机制涉及cry对phyB信号正调控因子的促进作用。光衍生信号持续到夜间使幼苗进入与光合生活方式一致的形态发生和生理程序。

相似文献

1
Synergism of red and blue light in the control of Arabidopsis gene expression and development.
Curr Biol. 2009 Jul 28;19(14):1216-20. doi: 10.1016/j.cub.2009.05.062. Epub 2009 Jun 25.
2
Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light.
Plant Cell. 2013 Jan;25(1):115-33. doi: 10.1105/tpc.112.107086. Epub 2013 Jan 31.
4
HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants.
Planta. 2008 Feb;227(3):559-64. doi: 10.1007/s00425-007-0638-4. Epub 2007 Oct 11.
5
Functional and expression analysis of Arabidopsis SPA genes during seedling photomorphogenesis and adult growth.
Plant J. 2006 Aug;47(4):577-90. doi: 10.1111/j.1365-313X.2006.02812.x. Epub 2006 Jun 30.
8
Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana.
J Biol Chem. 2012 Jul 27;287(31):25995-6009. doi: 10.1074/jbc.M111.333906. Epub 2012 Jun 12.

引用本文的文献

1
Sensory Perception of Fluctuating Light in Arabidopsis.
Plant Cell Environ. 2025 Sep;48(9):6645-6661. doi: 10.1111/pce.15633. Epub 2025 May 27.
3
On the contrasting morphological response to far-red at high and low photon fluxes.
Front Plant Sci. 2023 Jun 2;14:1185622. doi: 10.3389/fpls.2023.1185622. eCollection 2023.
4
The modulation of light quality on carotenoid and tocochromanol biosynthesis in mung bean () sprouts.
Food Chem (Oxf). 2023 Mar 7;6:100170. doi: 10.1016/j.fochms.2023.100170. eCollection 2023 Jul 30.
5
Light Spectral Composition Modifies Polyamine Metabolism in Young Wheat Plants.
Int J Mol Sci. 2022 Jul 29;23(15):8394. doi: 10.3390/ijms23158394.
6
EARLY FLOWERING 3 represses the nighttime growth response to sucrose in Arabidopsis.
Photochem Photobiol Sci. 2022 Nov;21(11):1869-1880. doi: 10.1007/s43630-022-00264-6. Epub 2022 Jul 22.
7
Upregulation of GLRs expression by light in Arabidopsis leaves.
BMC Plant Biol. 2022 Apr 15;22(1):197. doi: 10.1186/s12870-022-03535-7.
9
Roles of a Cryptochrome in Carbon Fixation and Sucrose Metabolism in the Liverwort .
Cells. 2021 Dec 1;10(12):3387. doi: 10.3390/cells10123387.
10

本文引用的文献

2
Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness.
Plant J. 2008 Jan;53(2):324-35. doi: 10.1111/j.1365-313X.2007.03346.x. Epub 2007 Dec 5.
3
Rhythmic growth explained by coincidence between internal and external cues.
Nature. 2007 Jul 19;448(7151):358-61. doi: 10.1038/nature05946. Epub 2007 Jun 24.
4
6
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
J Biol Chem. 2007 Mar 30;282(13):9383-9391. doi: 10.1074/jbc.M609842200. Epub 2007 Jan 19.
7
Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.
Plant Cell. 2006 Aug;18(8):1991-2004. doi: 10.1105/tpc.106.043224. Epub 2006 Jul 14.
8
Functional and expression analysis of Arabidopsis SPA genes during seedling photomorphogenesis and adult growth.
Plant J. 2006 Aug;47(4):577-90. doi: 10.1111/j.1365-313X.2006.02812.x. Epub 2006 Jun 30.
9
Intersection of signal transduction pathways and development.
Annu Rev Genet. 2006;40:139-57. doi: 10.1146/annurev.genet.40.110405.090555.
10
AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes.
Plant Physiol. 2006 Jul;141(3):977-87. doi: 10.1104/pp.106.076604. Epub 2006 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验