Suppr超能文献

通过高效分离ESCRT突变体对果蝇中ESCRT-I、ESCRT-II和ESCRT-III功能进行比较分析。

Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants.

作者信息

Vaccari Thomas, Rusten Tor Erik, Menut Laurent, Nezis Ioannis P, Brech Andreas, Stenmark Harald, Bilder David

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94702, USA.

出版信息

J Cell Sci. 2009 Jul 15;122(Pt 14):2413-23. doi: 10.1242/jcs.046391.

Abstract

ESCRT proteins were initially isolated in yeast as a single functional set of conserved components controlling endosomal cargo sorting and multivesicular body (MVB) biogenesis. Recent work has suggested that metazoan ESCRT proteins might have more functionally diverse roles, but the limited availability of ESCRT mutants in species other than yeast has hampered a thorough analysis. Here, we used a genetic screening strategy based on both cell-autonomous and non-autonomous growth-promotion phenotypes to isolate null mutations in nearly half of the ESCRT-encoding genes of Drosophila, including components of ESCRT-I, ESCRT-II and ESCRT-III complexes. All ESCRT components are required for trafficking of ubiquitylated proteins and are required to prevent excess Notch and EGFR signaling. However, cells lacking certain ESCRT-III components accumulate fewer ubiquitylated molecules in endosomes and display reduced degrees of cell proliferation compared with those lacking components of ESCRT-I and ESCRT-II. Moreover, although we find by ultrastructural analysis that MVB formation is impaired in ESCRT-I and ESCRT-II mutant cells, MVB biogenesis still occurs to some degree in ESCRT-III mutant cells. This work highlights the multiple cell biological and developmental roles of ESCRT proteins in Drosophila, suggests that the metazoan ESCRT-I, ESCRT-II and ESCRT-III complexes do not serve identical functions, and provides the basis for an extensive analysis of metazoan ESCRT function.

摘要

ESCRT蛋白最初是在酵母中作为一组控制内体货物分选和多泡体(MVB)生物发生的保守功能组件而分离出来的。最近的研究表明,后生动物的ESCRT蛋白可能具有更多功能多样的作用,但除酵母外其他物种中ESCRT突变体的可用性有限,阻碍了全面分析。在这里,我们使用了一种基于细胞自主和非自主生长促进表型的遗传筛选策略,以分离果蝇近一半ESCRT编码基因中的无效突变,包括ESCRT-I、ESCRT-II和ESCRT-III复合物的组件。所有ESCRT组件都是泛素化蛋白运输所必需的,并且是防止Notch和EGFR信号过度所必需的。然而,与缺乏ESCRT-I和ESCRT-II组件的细胞相比,缺乏某些ESCRT-III组件的细胞在内体中积累的泛素化分子更少,并且细胞增殖程度降低。此外,尽管我们通过超微结构分析发现ESCRT-I和ESCRT-II突变体细胞中的MVB形成受损,但ESCRT-III突变体细胞中MVB生物发生仍在一定程度上发生。这项工作突出了ESCRT蛋白在果蝇中的多种细胞生物学和发育作用,表明后生动物的ESCRT-I、ESCRT-II和ESCRT-III复合物并不具有相同的功能,并为广泛分析后生动物ESCRT功能提供了基础。

相似文献

2
Common and distinct genetic properties of ESCRT-II components in Drosophila.
PLoS One. 2009;4(1):e4165. doi: 10.1371/journal.pone.0004165. Epub 2009 Jan 9.
3
ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.
PLoS One. 2014 Apr 9;9(4):e93987. doi: 10.1371/journal.pone.0093987. eCollection 2014.
6
ESCRT-0 complex modulates Rbf-mutant cell survival by regulating Rhomboid endosomal trafficking and EGFR signaling.
J Cell Sci. 2016 May 15;129(10):2075-84. doi: 10.1242/jcs.182261. Epub 2016 Apr 7.

引用本文的文献

1
Regulation of Notch signaling by multiple Ankyrin repeat containing protein Mask.
Cell Commun Signal. 2025 Jul 30;23(1):358. doi: 10.1186/s12964-025-02190-3.
3
Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery.
Cells. 2024 Aug 5;13(15):1307. doi: 10.3390/cells13151307.
4
6
Molecular Mechanism of Autophagosome-Lysosome Fusion in Mammalian Cells.
Cells. 2024 Mar 13;13(6):500. doi: 10.3390/cells13060500.
7
Alternative mechanisms of Notch activation by partitioning into distinct endosomal domains.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202211041. Epub 2024 Feb 15.
8
Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36.
Nat Commun. 2023 Nov 29;14(1):7859. doi: 10.1038/s41467-023-42979-9.
10
Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation.
J Extracell Vesicles. 2023 Mar;12(3):e12311. doi: 10.1002/jev2.12311.

本文引用的文献

2
Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release.
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10541-6. doi: 10.1073/pnas.0802008105. Epub 2008 Jul 18.
3
Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage.
Traffic. 2008 Sep;9(10):1698-716. doi: 10.1111/j.1600-0854.2008.00797.x. Epub 2008 Jul 14.
4
Endosomal entry regulates Notch receptor activation in Drosophila melanogaster.
J Cell Biol. 2008 Feb 25;180(4):755-62. doi: 10.1083/jcb.200708127.
5
Plasma membrane deformation by circular arrays of ESCRT-III protein filaments.
J Cell Biol. 2008 Jan 28;180(2):389-402. doi: 10.1083/jcb.200707031. Epub 2008 Jan 21.
6
ESCRTing proteins in the endocytic pathway.
Trends Biochem Sci. 2007 Dec;32(12):561-73. doi: 10.1016/j.tibs.2007.09.010. Epub 2007 Nov 7.
7
A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation.
Genetics. 2007 Nov;177(3):1667-77. doi: 10.1534/genetics.107.078360. Epub 2007 Oct 18.
8
Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.
EMBO J. 2007 Oct 3;26(19):4215-27. doi: 10.1038/sj.emboj.7601850. Epub 2007 Sep 13.
9
Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary.
Development. 2007 Oct;134(19):3413-8. doi: 10.1242/dev.008466. Epub 2007 Aug 22.
10
The emerging shape of the ESCRT machinery.
Nat Rev Mol Cell Biol. 2007 May;8(5):355-68. doi: 10.1038/nrm2162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验