Suppr超能文献

感觉神经元中的模拟揭示了延迟钠电流在阈下振荡和异位放电中的关键作用:对神经性疼痛的影响。

Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain.

作者信息

Kovalsky Yifat, Amir Ron, Devor Marshall

机构信息

Department of Cell and Developmental Biology, Institute of Life Sciences, Center for Research on Pain, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.

出版信息

J Neurophysiol. 2009 Sep;102(3):1430-42. doi: 10.1152/jn.00005.2009. Epub 2009 Jul 1.

Abstract

Somata of primary sensory neurons are thought to contribute to the ectopic neural discharge that is implicated as a cause of some forms of neuropathic pain. Spiking is triggered by subthreshold membrane potential oscillations that reach threshold. Oscillations, in turn, appear to result from reciprocation of a fast active tetrodotoxin-sensitive Na+ current (INa+) and a passive outward IK+ current. We previously simulated oscillatory behavior using a transient Hodgkin-Huxley-type voltage-dependent INa+ and ohmic leak. This model, however, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances--which includes several delayed components--enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2-20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.

摘要

初级感觉神经元的胞体被认为会导致异位神经放电,这种放电被认为是某些形式的神经性疼痛的一个原因。阈下膜电位振荡达到阈值时会触发动作电位发放。反过来,振荡似乎是由快速激活的河豚毒素敏感的Na⁺电流(INa⁺)和被动外向IK⁺电流的相互作用引起的。我们之前使用瞬态霍奇金-赫胥黎型电压依赖性INa⁺和欧姆漏电来模拟振荡行为。然而,该模型与活细胞中观察到的振荡参数不同,并且未能产生特征性的异位放电模式。在这里我们表明,使用一套更完整的Na⁺电导——包括几个延迟成分——能够模拟在活的背根神经节(DRG)神经元中看到的由振荡触发的全部电生理现象。这包括诱导的生理窗口和动作电位发放的自然模式。2 - 20毫秒的INa⁺成分尤为重要,尽管它仅占总INa⁺幅度的一小部分。加上延迟整流IK⁺后,还可以模拟一些DRG神经元中看到的单峰发放。该模型揭示了传入性异位的关键电导,这些电导可能是寻找更有效治疗神经性疼痛方法的潜在有吸引力的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验