Eckel Stefanie, Fleischer Frank, Grabarnik Pavel, Kazda Marian, Särkkä Aila, Schmidt Volker
Ulm University, Institute of Stochastics, Helmholtzstr. 18, 89069 Ulm, Germany.
Biom J. 2009 Jun;51(3):522-39. doi: 10.1002/bimj.200800109.
The aim of the paper is to apply point processes to root data modelling. We propose a new approach to parametric inference when the data are inhomogeneous replicated marked point patterns. We generalize Geyer's saturation point process to a model, which combines inhomogeneity, marks and interaction between the marked points. Furthermore, the inhomogeneity influences the definition of the neighbourhood of points. Using the maximum pseudolikelihood method, this model is then fitted to root data from mixed stands of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) to quantify the degree of root aggregation in such mixed stands. According to the analysis there is no evidence that the two root systems are not independent.
本文的目的是将点过程应用于根系数据建模。当数据为非均匀复制标记点模式时,我们提出了一种参数推断的新方法。我们将盖耶尔的饱和点过程推广到一个模型,该模型结合了非均匀性、标记以及标记点之间的相互作用。此外,非均匀性影响点邻域的定义。然后使用最大伪似然法,将该模型应用于挪威云杉(Picea abies (L.) Karst.)和欧洲山毛榉(Fagus sylvatica L.)混交林的根系数据,以量化此类混交林中根系聚集的程度。根据分析,没有证据表明这两种根系不是独立的。