Suppr超能文献

肌球蛋白功能与骨骼肌——收缩性能的多尺度方法

Motor protein function in skeletal muscle-a multiple scale approach to contractility.

机构信息

Medical Biophysics Group, Institute of Physiology, University of Heidelberg, 69120 Heidelberg, Germany.

出版信息

IEEE Trans Med Imaging. 2009 Oct;28(10):1632-42. doi: 10.1109/TMI.2009.2026171. Epub 2009 Jun 30.

Abstract

We present an approach to skeletal muscle contractility and its regulation over different scales ranging from biomechanical studies in intact muscle fibers down to the motility and interaction of single motor protein molecules. At each scale, shortening velocities as a measure for weak cross-bridge cycling rates are extracted and compared. Experimental approaches include transmitted light microscopy, second harmonic generation imaging of contracting myofibrils, and fluorescence microscopy of single molecule motility. Each method yields image sequences that are analyzed with automated image processing algorithms to extract the contraction velocity. Using this approach, we show how to isolate the contribution of the motor proteins actin and myosin and their modulation by regulatory proteins from the concerted action of electro-mechanical activation on a more complex cellular scale. The advantage of this approach is that averaged contraction velocities can be determined on the different scales ranging from isolated motor proteins to sarcomere levels in myofibrils and myofibril arrays within the cellular architecture. Our results show that maximum shortening velocities during in situ electrical activation of sarcomere contraction in intact single muscle cells can substantially deviate from sliding velocities obtained in oriented in vitro motility assays of isolated motor proteins showing that biophysical contraction kinetics not simply translate linearly between contractility scales. To adequately resolve the very fast initial mechanical activation kinetics of shortening at each scale, it was necessary to implement high-speed imaging techniques. In the case of intact fibers and single molecule motility, we achieved a major increase in temporal resolution up to frame rates of 200-1000 fps using CMOS image sensor technology. The data we obtained at this unprecedented temporal resolution and the parameters extracted can be used to validate results obtained from computational models of motor protein interaction and skeletal muscle contractility in health and muscle disease. Our approach is feasible to explain the possible underlying mechanisms that contribute to different shortening velocities at different scales and complexities.

摘要

我们提出了一种方法来研究骨骼肌肉收缩性及其在不同尺度上的调节,范围从完整肌肉纤维的生物力学研究到单个肌球蛋白分子的运动和相互作用。在每个尺度上,都提取并比较了作为弱交联循环速率测量的缩短速度。实验方法包括透射光显微镜、收缩肌原纤维的二次谐波产生成像和单个分子运动的荧光显微镜。每种方法都会产生图像序列,然后使用自动化图像处理算法对其进行分析,以提取收缩速度。使用这种方法,我们展示了如何从更复杂的细胞尺度上的电机械激活的协同作用中分离出肌动蛋白和肌球蛋白等运动蛋白及其调节蛋白的贡献。这种方法的优点在于,可以在不同的尺度上(从单个运动蛋白到肌节水平的肌原纤维和肌原纤维阵列)确定平均收缩速度。我们的结果表明,在完整的单个肌肉细胞中肌节收缩的原位电激活过程中,最大缩短速度可以与在体外分离的运动蛋白的定向运动测定中获得的滑动速度有很大的偏差,这表明生物物理收缩动力学在不同的收缩性尺度之间不会简单地线性转化。为了在每个尺度上充分解析缩短的非常快速的初始机械激活动力学,有必要实施高速成像技术。在完整纤维和单个分子运动的情况下,我们使用 CMOS 图像传感器技术将时间分辨率提高了一个数量级,达到了 200-1000 fps 的帧速率。我们在前所未有的时间分辨率下获得的数据和提取的参数可用于验证健康和肌肉疾病中肌球蛋白分子相互作用和骨骼肌肉收缩性的计算模型的结果。我们的方法能够解释不同尺度和复杂度下不同缩短速度的可能潜在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验