Mann Francis M, Prisic Sladjana, Hu Huayou, Xu Meimei, Coates Robert M, Peters Reuben J
Department of Biochemistry, Iowa State University, Ames, Iowa 50011, USA.
J Biol Chem. 2009 Aug 28;284(35):23574-9. doi: 10.1074/jbc.M109.023788. Epub 2009 Jul 2.
Mycobacterium tuberculosis remains a widespread and devastating human pathogen, whose ability to infiltrate macrophage host cells from the human immune system is an active area of investigation. We have recently reported the discovery of a novel diterpene from M. tuberculosis, edaxadiene, whose ability to arrest phagosomal maturation in isolation presumably contributes to this critical process in M. tuberculosis infections. (Mann, F. M., Xu, M., Chen, X., Fulton, D. B., Russell, D. G., and Peters, R. J. (2009) J. Am. Chem. Soc., in press). Here, we present characterization of the class II diterpene cyclase that catalyzes the committed step in edaxadiene biosynthesis, i.e. the previously identified halimadienyl-diphosphate synthase (HPS; EC 5.5.1.16). Intriguingly, our kinetic analysis suggests a potential biochemical regulatory mechanism that triggers edaxadiene production upon phagosomal engulfment. Furthermore, we report characterization of potential HPS inhibitors: specifically, two related transition state analogs (15-aza-14,15-dihydrogeranylgeranyl diphosphate (7a) and 15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate (7b)) that exhibit very tight binding. Although arguably not suitable for clinical use, these nevertheless provide a basis for pharmaceutical design against this intriguing biosynthetic pathway. Finally, we provide evidence indicating that this pathway exists only in M. tuberculosis and is not functional in the closely related Mycobacterium bovis because of an inactivating frameshift in the HPS-encoding gene. Thus, we hypothesize that the inability to produce edaxadiene may be a contributing factor in the decreased infectivity and/or virulence of M. bovis relative to M. tuberculosis in humans.
结核分枝杆菌仍然是一种广泛存在且极具破坏性的人类病原体,其侵入人类免疫系统巨噬细胞宿主细胞的能力是一个活跃的研究领域。我们最近报道了从结核分枝杆菌中发现一种新型二萜类化合物——edaxadiene,其单独阻断吞噬体成熟的能力可能在结核分枝杆菌感染的这一关键过程中发挥作用。(曼恩,F.M.,徐,M.,陈,X.,富尔顿,D.B.,拉塞尔,D.G.,以及彼得斯,R.J.(2009年)《美国化学会志》,即将发表)。在此,我们展示了催化edaxadiene生物合成关键步骤的II类二萜环化酶的特性,即先前鉴定的半日花二烯基二磷酸合酶(HPS;EC 5.5.1.16)。有趣的是,我们的动力学分析表明存在一种潜在的生化调节机制,该机制在吞噬体吞噬时触发edaxadiene的产生。此外,我们报道了潜在的HPS抑制剂的特性:具体而言,两种相关的过渡态类似物(15 - 氮杂 - 14,15 - 二氢香叶基香叶基二磷酸(7a)和15 - 氮杂 - 14,15 - 二氢香叶基香叶基硫代二磷酸(7b))表现出非常紧密的结合。尽管可以说它们不适合临床使用,但这些化合物仍然为针对这一有趣生物合成途径的药物设计提供了基础。最后,我们提供的证据表明该途径仅存在于结核分枝杆菌中,而在密切相关的牛分枝杆菌中不起作用,因为编码HPS的基因发生了失活移码突变。因此,我们推测无法产生edaxadiene可能是牛分枝杆菌相对于结核分枝杆菌在人类中感染性和/或毒力降低的一个促成因素。