Suppr超能文献

使用容忍异常值的隐马尔可夫模型进行稳健的序列数据建模。

Robust sequential data modeling using an outlier tolerant hidden Markov model.

作者信息

Chatzis Sotirios P, Kosmopoulos Dimitrios I, Varvarigou Theodora A

机构信息

Center for Computational Science, University of Miami, Coral Gables, FL 33146, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Sep;31(9):1657-69. doi: 10.1109/TPAMI.2008.215.

Abstract

Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications.

摘要

使用有限高斯混合模型作为其隐藏状态分布的隐马尔可夫(链)模型已成功应用于序列数据建模和分类应用中。然而,众所周知,高斯混合模型对于用于其估计的拟合数据集中存在的非典型数据高度不耐受。有限学生t混合模型最近作为高斯混合模型的一种具有更重尾部、更稳健的替代模型出现,克服了这些障碍。为了在序列数据建模设置的背景下利用学生t混合模型的这些优点,我们在本文中引入了一种新颖的隐马尔可夫模型,其中隐藏状态分布被视为多元学生t密度的有限混合。我们在最大似然框架下推导了一种模型参数估计算法,假设协方差矩阵为满秩、对角和因子分析形式。通过一系列序列数据建模应用,实验证明了所提出模型相对于传统方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验