Adam Amit, Kimmel Ron, Rivlin Ehud
Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel.
IEEE Trans Pattern Anal Mach Intell. 2009 Sep;31(9):1708-14. doi: 10.1109/TPAMI.2009.21.
We consider curve evolution based on comparing distributions of features, and its applications for scene segmentation. In the first part, we promote using cross-bin metrics such as the Earth Mover's Distance (EMD), instead of standard bin-wise metrics as the Bhattacharyya or Kullback-Leibler metrics. To derive flow equations for minimizing functionals involving the EMD, we employ a tractable expression for calculating EMD between one-dimensional distributions. We then apply the derived flows to various examples of single image segmentation, and to scene analysis using video data. In the latter, we consider the problem of segmenting a scene to spatial regions in which different activities occur. We use a nonparametric local representation of the regions by considering multiple one-dimensional histograms of normalized spatiotemporal derivatives. We then obtain semisupervised segmentation of regions using the flows derived in the first part of the paper. Our results are demonstrated on challenging surveillance scenes, and compare favorably with state-of-the-art results using parametric representations by dynamic systems or mixtures of them.
我们考虑基于特征分布比较的曲线演化及其在场景分割中的应用。在第一部分,我们提倡使用诸如推土机距离(EMD)之类的跨箱度量,而不是像巴氏距离或库尔贝克 - 莱布勒度量这样的标准逐箱度量。为了推导用于最小化涉及EMD的泛函的流方程,我们采用了一种易于处理的表达式来计算一维分布之间的EMD。然后,我们将推导的流应用于单图像分割的各种示例,以及使用视频数据的场景分析。在后者中,我们考虑将场景分割为发生不同活动的空间区域的问题。我们通过考虑归一化时空导数的多个一维直方图来使用区域的非参数局部表示。然后,我们使用本文第一部分推导的流来获得区域的半监督分割。我们的结果在具有挑战性的监控场景中得到了验证,并且与使用动态系统的参数表示或它们的混合的现有技术结果相比具有优势。